このアイテムのアクセス数: 322
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.eswa.2015.08.041.pdf | 1.07 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Ahmad, Mohd Ashraf | en |
dc.contributor.author | Azuma, Shun-ichi | en |
dc.contributor.author | Sugie, Toshiharu | en |
dc.date.accessioned | 2016-01-15T04:15:25Z | - |
dc.date.available | 2016-01-15T04:15:25Z | - |
dc.date.issued | 2016-01 | - |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.uri | http://hdl.handle.net/2433/203064 | - |
dc.description.abstract | This paper proposes an identification method for Hammerstein systems using simultaneous perturbation stochastic approximation (SPSA). Here, the structure of nonlinear subsystem is assumed to be unknown, while the structure of linear subsystem, such as the system order, is assumed to be available. The main advantage of the SPSA-based method is that it can be applied to identification of Hammerstein systems with less restrictive assumptions. In order to clarify this point, piecewise affine functions with a large number of parameters are adopted to approximate the unknown nonlinear subsystems. Furthermore, the linear subsystems are supposed to be described in continuous-time. Though this class of systems closely reflects the actual systems, there are few methods to identify such models. Hence, the SPSA-based method is utilized to identify the parameters in both linear and nonlinear subsystems simultaneously. The effectiveness of the proposed method is evaluated through several numerical examples. The results demonstrate that the proposed algorithm is useful to obtain accurate models, even for high-dimensional parameter identification. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier Ltd. | en |
dc.rights | © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.rights | The full-text file will be made open to the public on 1 January 2018 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.rights | この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | ja |
dc.rights | This is not the published version. Please cite only the published version. | en |
dc.subject | Systems identification | en |
dc.subject | Stochastic approximation | en |
dc.subject | Continuous-time Hammerstein models | en |
dc.title | Identification of continuous-time Hammerstein systems by simultaneous perturbation stochastic approximation | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Expert Systems with Applications | en |
dc.identifier.volume | 43 | - |
dc.identifier.spage | 51 | - |
dc.identifier.epage | 58 | - |
dc.relation.doi | 10.1016/j.eswa.2015.08.041 | - |
dc.textversion | author | - |
dc.startdate.bitstreamsavailable | 2018-01-01 | - |
dcterms.accessRights | open access | - |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。