このアイテムのアクセス数: 315
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.isatra.2015.04.007.pdf | 14.68 MB | Adobe PDF | 見る/開く |
タイトル: | Efficient input variable selection for soft-senor design based on nearest correlation spectral clustering and group Lasso |
著者: | Fujiwara, Koichi ![]() ![]() ![]() Kano, Manabu ![]() ![]() ![]() |
著者名の別形: | 藤原, 幸一 |
キーワード: | Soft-sensor design Input variable selection Group Lasso Spectral clustering Near infrared spectroscopy |
発行日: | Sep-2015 |
出版者: | Elsevier Ltd. |
誌名: | ISA Transactions |
巻: | 58 |
開始ページ: | 367 |
終了ページ: | 379 |
抄録: | Appropriate input variables have to be selected for building highly accurate soft sensor. A novel input variable selection method based on nearest correlation spectral clustering (NCSC) has been proposed, and it is referred to as NCSC-based variable selection (NCSC-VS). Although NCSC-VS can select appropriate input variables, a lot of parameters have to be tuned carefully for selecting proper variables. The present work proposes a new methodology for efficient input variable selection by integrating NCSC and group Lasso. The proposed NCSC-based group Lasso (NCSC-GL) can not only reduce the number of tuning parameters but also achieve almost the same performance as NCSC-VS. The usefulness of the proposed NCSC-GL is demonstrated through applications to soft sensor design for a pharmaceutical process and a chemical process. |
著作権等: | © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ The full-text file will be made open to the public on 1 September 2017 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 This is not the published version. Please cite only the published version. |
URI: | http://hdl.handle.net/2433/203543 |
DOI(出版社版): | 10.1016/j.isatra.2015.04.007 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。