Downloads: 862

Files in This Item:
File Description SizeFormat 
sciadv.1600499.pdf706.47 kBAdobe PDFView/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAsano, Takashija
dc.contributor.authorSuemitsu, Masahiroja
dc.contributor.authorHashimoto, Koheija
dc.contributor.authorDe Zoysa, Menakaja
dc.contributor.authorShibahara, Tatsuyaja
dc.contributor.authorTsutsumi, Tatsunorija
dc.contributor.authorNoda, Susumuja
dc.contributor.alternative浅野, 卓ja
dc.contributor.alternative末光, 真大ja
dc.contributor.alternative野田, 進-
dc.date.accessioned2016-12-27T04:20:34Z-
dc.date.available2016-12-27T04:20:34Z-
dc.date.issued2016-12-23-
dc.identifier.issn2375-2548-
dc.identifier.urihttp://hdl.handle.net/2433/217701-
dc.description「熱エネルギー」を太陽電池が効率よく発電できる波長の「光」に変換することに初めて成功. 京都大学プレスリリース. 2016-12-27.ja
dc.description.abstractControl of the thermal emission spectra of emitters will result in improved energy utilization efficiency in a broad range of fields, including lighting, energy harvesting, and sensing. In particular, it is challenging to realize a highly selective thermal emitter in the near-infrared–to–visible range, in which unwanted thermal emission spectral components at longer wavelengths are significantly suppressed, whereas strong emission in the near-infrared–to–visible range is retained. To achieve this, we propose an emitter based on interband transitions in a nanostructured intrinsic semiconductor. The electron thermal fluctuations are first limited to the higher-frequency side of the spectrum, above the semiconductor bandgap, and are then enhanced by the photonic resonance of the structure. Theoretical calculations indicate that optimized intrinsic Si rod-array emitters with a rod radius of 105 nm can convert 59% of the input power into emission of wavelengths shorter than 1100 nm at 1400 K. It is also theoretically indicated that emitters with a rod radius of 190 nm can convert 84% of the input power into emission of <1800-nm wavelength at 1400 K. Experimentally, we fabricated a Si rod-array emitter that exhibited a high peak emissivity of 0.77 at a wavelength of 790 nm and a very low background emissivity of <0.02 to 0.05 at 1100 to 7000 nm, under operation at 1273 K. Use of a nanostructured intrinsic semiconductor that can withstand high temperatures is promising for the development of highly efficient thermal emitters operating in the near-infrared–to–visible range.ja
dc.format.mimetypeapplication/pdfja
dc.language.isoengja
dc.publisherAmerican Association for the Advancement of Scienceja
dc.rights2016 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).ja
dc.subjectthermal emission controlja
dc.subjectnear-infraredja
dc.subjectvisibleja
dc.subjectenergy utilization efficiencyja
dc.subjectthermal emitterja
dc.subjectintrinsic semiconductorja
dc.subjectinterband transitionja
dc.subjectelectronic resonanceja
dc.subjectphotonic resonanceja
dc.titleNear-infrared–to–visible highly selective thermal emitters based on an intrinsic semiconductorja
dc.type.niitypeJournal Articleja
dc.identifier.jtitleScience Advancesja
dc.identifier.volume2ja
dc.identifier.issue12ja
dc.relation.doi10.1126/sciadv.1600499ja
dc.textversionpublisherja
dc.identifier.artnume1600499ja
dc.relation.urlhttp://www.kyoto-u.ac.jp/ja/research/research_results/2016/161224_1.htmlja
Appears in Collections:Journal Articles

Show simple item record

Export to RefWorks


Export Format: 


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.