このアイテムのアクセス数: 313

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.procs.2015.09.207.pdf347.63 kBAdobe PDF見る/開く
タイトル: A Bayesian Optimization-based Evolutionary Algorithm for Flexible Job Shop Scheduling
著者: Sun, Lu
Lin, Lin
Wang, Yan
Gen, Mitsuo
Kawakami, Hiroshi  KAKEN_id  orcid https://orcid.org/0000-0001-9867-5943 (unconfirmed)
キーワード: Bayesian Optimization Algorithm
Flexible Job-shop Scheduling Problem
Evolutionary Algorithms
発行日: 2015
出版者: Elsevier BV
誌名: Procedia Computer Science
巻: 61
開始ページ: 521
終了ページ: 526
抄録: Flexible Job-shop Scheduling Problem (fJSP) is a typical and important scheduling problem in Flexible Manufacturing System (FMS). The fJSP is an extended version of Job-shop Scheduling (JSP) that is NP hard problem. Due to it according with the real production system, we adopt a hybrid evolutionary computation algorithm to solve the fJSP problems. Among them, the Bayesian Optimization Algorithm (BOA) is introduced to the characteristics of scheduling and uncertainty characteristics of the time in the fJSP. On this basis, we propose a distributed evolutionary algorithm and parameter adaptive mechanism. Finally, through experiments, we conclude that the proposed hybrid evolutionary algorithm based on BOA with grouping mechanism get better solution than original algorithm and improve robustness of algorithm. Meanwhile, the paper also have objective perspective, that is we can group the data different from each other, make the whole population into sub-populations, and then make the experiment separately on different and parallel machines in distributed environment, so that not only optimizes the best solution, but also enhance the efficiency and shortened the time.
著作権等: © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/license/by-nc-nd/4.0/)
URI: http://hdl.handle.net/2433/226400
DOI(出版社版): 10.1016/j.procs.2015.09.207
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。