ダウンロード数: 169

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s12650-017-0451-5.pdf851.72 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKoyamada, Kojien
dc.contributor.authorOnoue, Yosukeen
dc.contributor.authorKioka, Mikien
dc.contributor.authorUetsuji, Tomoyaen
dc.contributor.authorBaba, Kazutakaen
dc.contributor.alternative小山田, 耕二ja
dc.date.accessioned2018-04-03T01:31:57Z-
dc.date.available2018-04-03T01:31:57Z-
dc.date.issued2018-04-01-
dc.identifier.issn1343-8875-
dc.identifier.urihttp://hdl.handle.net/2433/230363-
dc.description.abstractSince the abstract can be found at the beginning of most scientific articles and is an essential part of the article, several attempts have been made to explore the rhetorical moves of abstracts in various research fields. These studies dealt only with accepted articles since they can be easily accessed. Although the findings of such works have some pedagogical implications for academic writing courses for young researchers who are relatively new to their fields, they do not contribute enough to the transparency of the peer review processes conducted in research fields. Increasing transparency requires considering rejected articles since they help to clarify the decision criteria in the peer review. Based on 591 abstracts of accepted or rejected articles submitted to Journal of Visualization (JOV), the present study aimed at exploring the differences between the accepted and rejected abstracts. The results show that there are significant differences in the structures of the abstracts. Since we also successfully develop a classification model for the decision using a machine-learning technique, the findings of this study have some implications for developing a semi-automatic reviewing system that can reduce the reviewer’s burden and increase the review quality.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Verlagen
dc.rights© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.en
dc.subjectReview crisisen
dc.subjectPeer reviewen
dc.subjectMove analysisen
dc.subjectText visualization /Machine learningen
dc.titleVisualization of JOV abstractsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Visualizationen
dc.identifier.volume21-
dc.identifier.issue2-
dc.identifier.spage309-
dc.identifier.epage319-
dc.relation.doi10.1007/s12650-017-0451-5-
dc.textversionpublisher-
dc.addressAcademic Center for Computing and Media Studies, Kyoto Universityen
dc.addressScience for Innovation Policy Unit, Center for the Promotion of Interdisciplinary Education and Research, Kyoto Universityen
dc.addressAcademic Center for Computing and Media Studies, Kyoto Universityen
dc.addressGraduate School of Engineering, Kyoto Universityen
dc.addressAcademic Center for Computing and Media Studies, Kyoto Universityen
dc.identifier.pmid29568224-
dcterms.accessRightsopen access-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。