ダウンロード数: 58
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2005-13.pdf | 984.84 kB | Adobe PDF | 見る/開く |
タイトル: | Exponential Runge-Kutta methods for stiff stochastic differential equations (Fusion of theory and practice in applied mathematics and computational science) |
著者: | Komori, Yoshio |
著者名の別形: | 小守, 良雄 |
発行日: | Nov-2016 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2005 |
開始ページ: | 128 |
終了ページ: | 140 |
抄録: | It is well known that the numerical solution of stiff stochastic differential equations (SDEs) leads to a stepsize reduction when explicit methods are used. However, there are some classes of explicit methods that are well suited to solving some types of stiff SDEs. One such class is the class of stochastic orthogonal Runge-Kutta Chebyshev (SROCK) methods. SROCK methods reduce to Runge- Kutta Chebyshev methods when applied to ordinary differential equations (ODEs). Another promising class of methods is the class of explicit methods that reduce to explicit exponential Runge-Kutta (RK) methods when applied to semilinear ODEs. In the present paper, such explicit methods are considered. As a result, the stochastic exponential Euler scheme will be derived for strong approximations to the solution of stiff Itô SDEs with a semilinear drift term. In addition, stochastic exponential RK methods will be derived for weak approximations. |
URI: | http://hdl.handle.net/2433/231519 |
出現コレクション: | 2005 応用数理と計算科学における理論と応用の融合 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。