このアイテムのアクセス数: 102
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2010-12.pdf | 911.19 kB | Adobe PDF | 見る/開く |
タイトル: | Inequivalent Weyl Representations of Canonical Commutation Relations in an Abstract Bose Field Theory (Mathematical Aspects of Quantum Fields and Related Topics) |
著者: | Arai, Asao |
著者名の別形: | 新井, 朝雄 |
キーワード: | 81R10 47L60 Boson Fock space canonical commutation relations inequivalent representation quantum field time-zero field Weyl representation |
発行日: | Dec-2016 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2010 |
開始ページ: | 116 |
終了ページ: | 126 |
抄録: | Considered is a family of irreducible Weyl representations of canonical commutation relations with infinite degrees of freedom on the abstract boson Fock space over a complex Hilbert space. Theorems on equivalence or inequivalence of the representations are reportedcdot. As a simple application, the well known inequivalence of the time-zero field and conjugate momentum of different masses in a quantum scalar field theory is rederived with space dimension dgeq 1 arbitrary. Also a generalization of representations of the time-zero field and conjugate momentum is presented. Comparison is made with a quantum scalar field on a bounded space of mathbb{R}^{d}. In the case of a bounded space with d=1, 2, 3, the representations of different masses turn out to be mutually equivalent. |
URI: | http://hdl.handle.net/2433/231584 |
出現コレクション: | 2010 量子場の数理とその周辺 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。