このアイテムのアクセス数: 164

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.aim.2017.11.017.pdf1.26 MBAdobe PDF見る/開く
タイトル: The Crepant Transformation Conjecture for toric complete intersections
著者: Coates, Tom
Iritani, Hiroshi  kyouindb  KAKEN_id
Jiang, Yunfeng
著者名の別形: 入谷, 寛
キーワード: Toric Deligne–Mumford stacks
Crepant Resolution Conjecture
Mirror symmetry
Quantum cohomology
Fourier–Mukai transformation
Mellin–Barnes method
発行日: 30-Apr-2018
出版者: Elsevier BV
誌名: Advances in Mathematics
巻: 329
開始ページ: 1002
終了ページ: 1087
抄録: Let X and Y be K-equivalent toric Deligne–Mumford stacks related by a single toric wall-crossing. We prove the Crepant Transformation Conjecture in this case, fully-equivariantly and in genus zero. That is, we show that the equivariant quantum connections for X and Y become gauge-equivalent after analytic continuation in quantum parameters. Furthermore we identify the gauge transformation involved, which can be thought of as a linear symplectomorphism between the Givental spaces for X and Y, with a Fourier–Mukai transformation between the K-groups of X and Y, via an equivariant version of the Gamma-integral structure on quantum cohomology. We prove similar results for toric complete intersections. We impose only very weak geometric hypotheses on X and Y: they can be non-compact, for example, and need not be weak Fano or have Gorenstein coarse moduli space. Our main tools are the Mirror Theorems for toric Deligne–Mumford stacks and toric complete intersections, and the Mellin–Barnes method for analytic continuation of hypergeometric functions.
著作権等: © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
URI: http://hdl.handle.net/2433/233906
DOI(出版社版): 10.1016/j.aim.2017.11.017
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。