このアイテムのアクセス数: 164
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.aim.2017.11.017.pdf | 1.26 MB | Adobe PDF | 見る/開く |
タイトル: | The Crepant Transformation Conjecture for toric complete intersections |
著者: | Coates, Tom Iritani, Hiroshi ![]() ![]() Jiang, Yunfeng |
著者名の別形: | 入谷, 寛 |
キーワード: | Toric Deligne–Mumford stacks Crepant Resolution Conjecture Mirror symmetry Quantum cohomology Fourier–Mukai transformation Mellin–Barnes method |
発行日: | 30-Apr-2018 |
出版者: | Elsevier BV |
誌名: | Advances in Mathematics |
巻: | 329 |
開始ページ: | 1002 |
終了ページ: | 1087 |
抄録: | Let X and Y be K-equivalent toric Deligne–Mumford stacks related by a single toric wall-crossing. We prove the Crepant Transformation Conjecture in this case, fully-equivariantly and in genus zero. That is, we show that the equivariant quantum connections for X and Y become gauge-equivalent after analytic continuation in quantum parameters. Furthermore we identify the gauge transformation involved, which can be thought of as a linear symplectomorphism between the Givental spaces for X and Y, with a Fourier–Mukai transformation between the K-groups of X and Y, via an equivariant version of the Gamma-integral structure on quantum cohomology. We prove similar results for toric complete intersections. We impose only very weak geometric hypotheses on X and Y: they can be non-compact, for example, and need not be weak Fano or have Gorenstein coarse moduli space. Our main tools are the Mirror Theorems for toric Deligne–Mumford stacks and toric complete intersections, and the Mellin–Barnes method for analytic continuation of hypergeometric functions. |
著作権等: | © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
URI: | http://hdl.handle.net/2433/233906 |
DOI(出版社版): | 10.1016/j.aim.2017.11.017 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。