このアイテムのアクセス数: 374

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
15732479.2018.1436572.pdf937.08 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKIM, CHUL-WOOen
dc.contributor.authorZhang, Yien
dc.contributor.authorWang, Ziranen
dc.contributor.authorMorita, Tomoakien
dc.contributor.authorOshima, Yoshinobuen
dc.contributor.alternative金, 哲佑ja
dc.date.accessioned2018-11-09T07:21:10Z-
dc.date.available2018-11-09T07:21:10Z-
dc.date.issued2018-
dc.identifier.issn1573-2479-
dc.identifier.urihttp://hdl.handle.net/2433/235011-
dc.description.abstractThis study presents a damage detection approach for the long-term health monitoring of bridge structures. The Bayesian approach comprising both Bayesian regression and Bayesian hypothesis testing is proposed to detect the structural changes in an in-service seven-span steel plate girder bridge with Gerber system. Both temperature and vehicle weight effects are accounted in the analysis. The acceleration responses at four points of the bridge span are utilised in this investigation. The data covering three different time periods are used in the bridge health monitoring (BHM). Regression analyses showed that the autoregressive exogenous model considering both temperature and vehicle weight effects has the best performance. The Bayesian factor is found to be a sensitive damage indicator in the BHM. The Bayesian approach can provide updated information in the real-time monitoring of bridge structures. The information provided from the Bayesian approach is convenient and easy to handle compared to the traditional approaches. The applicability of this approach is also validated in a case study where artificially generated damage data is added to the observation data.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherTaylor & Francisen
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Structures and Infrastructure Engineering on 12 March 2018, available online: http://www.tandfonline.com/10.1080/15732479.2018.1436572.en
dc.rightsThe full-text file will be made open to the public on 12 March 2019 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version.en
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.subjectAutoregressive modelen
dc.subjectBayesian statisticsen
dc.subjectbridge health monitoringen
dc.subjectdamage detectionen
dc.subjectKalman filteren
dc.subjectlong-term assessmenten
dc.subjectreal bridgeen
dc.titleLong-term bridge health monitoring and performance assessment based on a Bayesian approachen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleStructure and Infrastructure Engineeringen
dc.identifier.volume14-
dc.identifier.issue7-
dc.identifier.spage883-
dc.identifier.epage894-
dc.relation.doi10.1080/15732479.2018.1436572-
dc.textversionauthor-
dc.addressDepartment of Civil and Earth Resources Engineering, Kyoto Universityen
dc.addressDepartment of Civil and Earth Resources Engineering, Kyoto Universityen
dc.addressDepartment of Civil and Earth Resources Engineering, Kyoto Universityen
dc.addressCenter for Advanced Engineering Structural Assessment and Research (CAESAR), Public Works Research Institute, Tsukubaen
dc.addressObayashi Corporation, Tokyoen
dcterms.accessRightsopen access-
datacite.date.available2019-03-12-
datacite.awardNumber16H04398-
dc.identifier.pissn1573-2479-
dc.identifier.eissn1744-8980-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。