ダウンロード数: 141

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s12918-018-0527-4.pdf1.27 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorMori, Takuyaen
dc.contributor.authorNgouv, Hayliangen
dc.contributor.authorHayashida, Morihiroen
dc.contributor.authorAkutsu, Tatsuyaen
dc.contributor.authorNacher, Jose C.en
dc.contributor.alternative阿久津, 達也ja
dc.date.accessioned2018-11-12T04:22:51Z-
dc.date.available2018-11-12T04:22:51Z-
dc.date.issued2018-04-11-
dc.identifier.issn1752-0509-
dc.identifier.urihttp://hdl.handle.net/2433/235019-
dc.description.abstract[Background] Current technology has demonstrated that mutation and deregulation of non-coding RNAs (ncRNAs) are associated with diverse human diseases and important biological processes. Therefore, developing a novel computational method for predicting potential ncRNA-disease associations could benefit pathologists in understanding the correlation between ncRNAs and disease diagnosis, treatment, and prevention. However, only a few studies have investigated these associations in pathogenesis. [Results] This study utilizes a disease-target-ncRNA tripartite network, and computes prediction scores between each disease-ncRNA pair by integrating biological information derived from pairwise similarity based upon sequence expressions with weights obtained from a multi-layer resource allocation technique. Our proposed algorithm was evaluated based on a 5-fold-cross-validation with optimal kernel parameter tuning. In addition, we achieved an average AUC that varies from 0.75 without link cut to 0.57 with link cut methods, which outperforms a previous method using the same evaluation methodology. Furthermore, the algorithm predicted 23 ncRNA-disease associations supported by other independent biological experimental studies. [Conclusions] Taken together, these results demonstrate the capability and accuracy of predicting further biological significant associations between ncRNAs and diseases and highlight the importance of adding biological sequence information to enhance predictions.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s). 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.en
dc.subjectncRNA-disease association predictionsen
dc.subjectTripartite networken
dc.subjectResource allocationen
dc.titlencRNA-disease association prediction based on sequence information and tripartite networken
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleBMC Systems Biologyen
dc.identifier.volume12-
dc.identifier.issueSupplement 1-
dc.relation.doi10.1186/s12918-018-0527-4-
dc.textversionpublisher-
dc.identifier.artnum37-
dc.addressDepartment of Information Science, Toho Universityen
dc.addressBioinformatics Center, Institute for Chemical Research, Kyoto Universityen
dc.addressDepartment of Electrical Engineering, Matsue College of Technologyen
dc.addressBioinformatics Center, Institute for Chemical Research, Kyoto Universityen
dc.addressDepartment of Information Science, Toho Universityen
dc.identifier.pmid29671405-
dcterms.accessRightsopen access-
datacite.awardNumberJP25330351-
datacite.awardNumber16K00392-
datacite.awardNumber26240034-
datacite.awardNumber26540125-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。