Access count of this item: 15

Files in This Item:
File Description SizeFormat 
2018-14.pdf418.6 kBAdobe PDFView/Open
Title: Kummer surfaces, and Enriques surfaces with tree structure
Authors: 向井, 茂  KAKEN_name
Author's alias: Mukai, Shigeru
Issue Date: 2018
Publisher: 京都大学数理解析研究所
Journal title: 代数幾何学シンポジウム記録
Volume: 2018
Start page: 134
End page: 144
Abstract: Taking the quotient of the Jacobian Kummer surface Xocta of the octahedral curve y2=x(x4-1) by a Hutchinson-Göpel involution εH, we obtain an Enriques surface Socta with action of the group T192=(C3 2)×S4 of order 192 ([11]). The automorophism group of Socta is the semi-direct product (C*8 2)×T192 of the free product of 8 involutions by T192. In particular Aut Socta is virtually free.
Description: 於 城崎国際アートセンター(2018年10月22日-10月26日)
平成30年度科学研究費補助金 基盤研究(S)(課題番号15H05738, 代表 金銅誠之), 平成30年度科学研究費補助金 基盤研究(S)(課題番号17H06127, 代表 齋藤政彦), 平成30年度科学研究費補助金 基盤研究(S)(課題番号16H06337, 代表 高橋篤史)
Date : Oct. 22, 2018 (Mon) - Oct. 26, 2018 (Fri). Venue : Kinosaki International Arts Center.
Kinosaki Algebraic Geometry Symposium 2018 is partially supported by Grantin-Aid for Scientific Research (S) 15H05738, (S) 17H06127, and (S) 16H06337. Organizers: Hokuto Uehara (Tokyo Metropolitan University), Kiwamu Watanabe (Saitama University), Atsushi Kanazawa (Kyoto University)
Appears in Collections:2018

Show full item record

Export to RefWorks

Export Format: 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.