このアイテムのアクセス数: 210

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
giscience2017_01_s36.pdf455.68 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorPercival, Josephen
dc.contributor.authorTsutsumida, Narumasaen
dc.contributor.alternative堤田, 成政ja
dc.date.accessioned2019-05-10T01:47:35Z-
dc.date.available2019-05-10T01:47:35Z-
dc.date.issued2017-06-30-
dc.identifier.isbn9783700181583-
dc.identifier.issn2308-1708-
dc.identifier.urihttp://hdl.handle.net/2433/241241-
dc.description.abstractSpatial correlation between variables may exist if the observed data exhibits spatial variation in a manner that is described by Tobler's first law of geography. Partial correlation is useful when considering multivariate data as it can highlight the effects of certain control variables on the correlation between any two other variables. Techniques for estimating spatial correlation have been developed based on a geographically weighted scheme. However, a partial correlation technique for spatial data has not yet been considered. Hence, we describe a technique for obtaining geographically weighted partial correlation coefficients between three variables. This approach is then applied, as an example, to global climate data in order to explore the relationship between terrestrial vegetation (by NDVI proxy), land surface temperature, and precipitation in the year 2014. Spatial variations of those variables are observed and the geographically weighted correlation and partial correlation coefficients (along with associated levels of statistical significance) are compared.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherOsterreichische Akademie der Wissenschaftenen
dc.rightsGI_Forum implements the policy of open access publication after a double-blind peer review process through a highly international team of seasoned scientists for quality assurance. Special emphasis is put on actively supporting young scientists through formative reviews of their submissions. Only English language contributions are published. Contributions are published under a cc-by-nd license (http://creativecommons.org/licenses/by-nd/4.0/).en
dc.subjectpartial correlationen
dc.subjectspatial statisticsen
dc.subjectgeographically weighted approachen
dc.titleGeographically weighted partial correlation for spatial analysisen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleGI_Forumen
dc.identifier.volume5-
dc.identifier.issue1-
dc.identifier.spage36-
dc.identifier.epage43-
dc.relation.doi10.1553/giscience2017_01_s36-
dc.textversionpublisher-
dc.addressGraduate School of Global Environmental Studies, Kyoto Universityen
dc.addressGraduate School of Global Environmental Studies, Kyoto Universityen
dcterms.accessRightsopen access-
datacite.awardNumber15K21086-
dc.identifier.eissn2308-1708-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。