このアイテムのアクセス数: 98

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
B53-01.pdf716.15 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorArai, Keisukeen
dc.contributor.alternative新井, 啓介ja
dc.contributor.transcriptionアライ, ケイスケja-Kana
dc.date.accessioned2019-05-13T07:50:11Z-
dc.date.available2019-05-13T07:50:11Z-
dc.date.issued2015-09-
dc.identifier.issn1881-6193-
dc.identifier.urihttp://hdl.handle.net/2433/241271-
dc.description"Algebraic Number Theory and Related Topics 2013". December 9~13, 2013. edited by Tadashi Ochiai, Takeshi Tsuji and Iwao Kimura. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed.en
dc.description.abstractIn previous articles, we proved that there are no points rational over a fixed number field on the Shimura curve of $Gamma$_{0}(p)-type for every sufficiently large prime number p under a mild assumption. In this article, (1) we generalize the previous result to an infinite family of number fields, and (2) give examples not satisfying the mild assumption as mentioned above.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.publisher.alternative京都大学数理解析研究所ja
dc.rights© 2015 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.en
dc.subject11G18en
dc.subject14G05en
dc.subjectrational pointsen
dc.subjectShimura curvesen
dc.subject.ndc410-
dc.titleAlgebraic points on Shimura curves of $Gamma_{0}(p)$-type (IV) (Algebraic Number Theory and Related Topics 2013)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAA12196120-
dc.identifier.jtitle数理解析研究所講究録別冊ja
dc.identifier.volumeB53-
dc.identifier.spage3-
dc.identifier.epage11-
dc.textversionpublisher-
dc.sortkey01-
dc.addressSchool of Science and Technology for Future Life, Tokyo Denki Universityen
dcterms.accessRightsopen access-
dc.identifier.pissn1881-6193-
dc.identifier.jtitle-alternativeRIMS Kokyuroku Bessatsuen
出現コレクション:B53 Algebraic Number Theory and Related Topics 2013

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。