このアイテムのアクセス数: 153
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
B54-03.pdf | 2.86 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | 松江, 要 | ja |
dc.contributor.author | 内藤, 久資 | ja |
dc.contributor.alternative | Matsue, Kaname | en |
dc.contributor.alternative | Naito, Hisashi | en |
dc.contributor.transcription | マツエ, カナメ | ja-Kana |
dc.contributor.transcription | ナイトウ, ヒサシ | ja-Kana |
dc.date.accessioned | 2019-05-13T07:50:16Z | - |
dc.date.available | 2019-05-13T07:50:16Z | - |
dc.date.issued | 2015-10 | - |
dc.identifier.issn | 1881-6193 | - |
dc.identifier.uri | http://hdl.handle.net/2433/241298 | - |
dc.description | "Topology optimization theory and applications toward wide fields of natural sciences". May 7~9, 2014. edited by Takashi Nakazawa. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed. | en |
dc.description.abstract | We consider the optimization of the first eigenvalue of -nabla. ( $rho$nabla u) = $lambda$ u on a bounded domain $Omega$ subset mathbb{R}^{n} with a constraint on the diffusion coefficient $rho$. We reduce our optimization problem to the Hamilton-Jacobi type equation for the function determining $rho$ via the level set method. We take the viscous approximation of the Hamilton-Jacobi type equation and prove its global well-posedness. We expect that solutions of the original Hamilton-Jacobi type equation are obtained as the limit of its viscous approximation. We also expect that the proposing approach leads to the optimization analysis of general energy functionals including constraints. This article is written in Japanese. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | jpn | - |
dc.publisher | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.publisher.alternative | 京都大学数理解析研究所 | ja |
dc.rights | © 2015 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. | en |
dc.subject | topology optimization | en |
dc.subject | Hamilton-Jacobi type equation | en |
dc.subject | semilinear parabolic evolution equation | en |
dc.subject | viscous approximation | en |
dc.subject.ndc | 410 | - |
dc.title | Optimization of the first eigenvalue of the heat diffusion in inhomogeneous media: Global well-posedness of the viscous approximation problems (Topology optimization theory and applications toward wide fields of natural sciences) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AA12196120 | - |
dc.identifier.jtitle | 数理解析研究所講究録別冊 | ja |
dc.identifier.volume | B54 | - |
dc.identifier.spage | 25 | - |
dc.identifier.epage | 48 | - |
dc.textversion | publisher | - |
dc.sortkey | 03 | - |
dc.address | The Institute of Statistical Mathematics | en |
dc.address | Graduate School of Mathematics, Nagoya University | en |
dcterms.accessRights | open access | - |
datacite.awardNumber | 26400067 | - |
dc.identifier.pissn | 1881-6193 | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku Bessatsu | en |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
出現コレクション: | B54 Topology optimization theory and applications toward wide fields of natural sciences |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。