このアイテムのアクセス数: 175

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
B56-02.pdf1.79 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorIkeda, Masahiroen
dc.contributor.authorInui, Takahisaen
dc.contributor.alternativeイケダ, マサヒロja
dc.contributor.alternativeイヌイ, タカヒサja
dc.contributor.transcriptionイケダ, マサヒロja-Kana
dc.contributor.transcriptionイヌイ, タカヒサja-Kana
dc.date.accessioned2019-05-13T07:50:21Z-
dc.date.available2019-05-13T07:50:21Z-
dc.date.issued2016-04-
dc.identifier.issn1881-6193-
dc.identifier.urihttp://hdl.handle.net/2433/241319-
dc.description"Harmonic Analysis and Nonlinear Partial Differential Equations". June 30~July 2, 2014. edited by Hideo Kubo and Mitsuru Sugimoto. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed.en
dc.description.abstractWe consider the Cauchy problem for the semi-linear damped Klein-Gordon equations with a p-th order power nonlinearity in the Euclidean space mathbb{R}^{d}. It is well-known that the equation is locally well-posed in the energy space H^{1}(mathbb{R}^{d}) times L^{2}(mathbb{R}^{d}) in the energy-subcritical or critical case 1 <pleq p_{1} for dgeq 3 or 1 <p for d=1, 2, where p_{1} :=1+4/(d-2). In the present paper, we give a large data blow-up of energy solution in this case, i.e. 1 <pleq p_{1} for dgeq 3 or 1 <p for d= 1, 2 (Theorem 2.4). Moreover, we also prove a non-existence of a local weak solution (Definition 2.2) in the energy-supercritical case p >p_{1} (Theorem 2.7). Our proofs are based on a invariant of a test-function method.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.publisher.alternative京都大学数理解析研究所ja
dc.rights© 2016 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.en
dc.subject35L15en
dc.subject35L71en
dc.subjectenergy-criticalen
dc.subjectblow-upen
dc.subjectlarge dataen
dc.subjectnon-existence of local solutionen
dc.subjectenergy-supercriticalen
dc.subject.ndc410-
dc.titleA remark on non-existence results for the semi-linear damped Klein-Gordon equations (Harmonic Analysis and Nonlinear Partial Differential Equations)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAA12196120-
dc.identifier.jtitle数理解析研究所講究録別冊ja
dc.identifier.volumeB56-
dc.identifier.spage11-
dc.identifier.epage30-
dc.textversionpublisher-
dc.sortkey02-
dc.addressDepartment of Mathematics, Graduate School of Science, Kyoto Universityen
dc.addressDepartment of Mathematics, Graduate School of Science, Kyoto Universityen
dcterms.accessRightsopen access-
dc.identifier.pissn1881-6193-
dc.identifier.jtitle-alternativeRIMS Kokyuroku Bessatsuen
出現コレクション:B56 Harmonic Analysis and Nonlinear Partial Differential Equations

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。