このアイテムのアクセス数: 98

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
B56-05.pdf2.95 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorMandai, Takeshien
dc.contributor.alternativeマンダイ, タケシja
dc.contributor.transcriptionマンダイ, タケシja-Kana
dc.date.accessioned2019-05-13T07:50:21Z-
dc.date.available2019-05-13T07:50:21Z-
dc.date.issued2016-04-
dc.identifier.issn1881-6193-
dc.identifier.urihttp://hdl.handle.net/2433/241322-
dc.description"Harmonic Analysis and Nonlinear Partial Differential Equations". June 30~July 2, 2014. edited by Hideo Kubo and Mitsuru Sugimoto. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed.en
dc.description.abstractThe Hilbert transform is an important transform not only in Mathematics, but also in some applications. Since a wavelet function has zero average, the Hilbert transform of it is a good function in many cases. It is well-known that many wavelet functions, especially important ones, can be generated from scaling functions in the framework of multiresolution analysis (MRA. Hence, it is an important problem what is the scaling function from which the Hilbert transform of the wavelet function is generated. We consider two families of unitary operators. One is a family of extensions of the Hilbert transform called fractional Hilbert transforms. The other is a new family of operators which are a kind of modified translation operators. A fractional Hilbert transform of a given orthonormal wavelet (resp. scaling) function is also an orthonormal wavelet (resp. scaling) function, although a fractional Hilbert transform of a scaling function has bad localization in many cases. We show that a modified translation of a scaling function is also a scaling function, and it generates a fractional Hilbert transform of the corresponding wavelet function. Further, we show a good localization property of the modified translation operators. The modified translation operators act on the Meyer scaling functions as the ordinary translation operators. We give a class of scaling functions, on which the modified translation operators act as the ordinary translation operators.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.publisher.alternative京都大学数理解析研究所ja
dc.rights© 2016 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.en
dc.subject42C40en
dc.subject44A15en
dc.subjectorthonormal waveleten
dc.subjectscaling functionen
dc.subjectMRAen
dc.subjectMeyer waveleten
dc.subjectfractional Hilbert transformen
dc.subject.ndc410-
dc.titleOrthonormal scaling functions generating fractional Hilbert transforms of an orthonormal wavelet (Harmonic Analysis and Nonlinear Partial Differential Equations)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAA12196120-
dc.identifier.jtitle数理解析研究所講究録別冊ja
dc.identifier.volumeB56-
dc.identifier.spage51-
dc.identifier.epage77-
dc.textversionpublisher-
dc.sortkey05-
dc.addressOsaka Electro-Communication Universityen
dcterms.accessRightsopen access-
datacite.awardNumber25400202-
datacite.awardNumber24540197-
datacite.awardNumber23540135-
dc.identifier.pissn1881-6193-
dc.identifier.jtitle-alternativeRIMS Kokyuroku Bessatsuen
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:B56 Harmonic Analysis and Nonlinear Partial Differential Equations

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。