このアイテムのアクセス数: 62
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2062-01.pdf | 913 kB | Adobe PDF | 見る/開く |
タイトル: | ADDENDUM TO "AN ABELIAN QUOTIENT OF THE SYMPLECTIC DERIVATION LIE ALGEBRA OF THE FREE LIE ALGEBRA" (Topology and Analysis of Discrete Groups and Hyperbolic Spaces) |
著者: | Morita, Shigeyuki Sakasai, Takuya Suzuki, Masaaki |
著者名の別形: | 森田, 茂之 逆井, 卓也 鈴木, 正明 |
キーワード: | 20F28 20J06 17B40 symplectic derivations outer automorphism group free group |
発行日: | Apr-2018 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2062 |
開始ページ: | 1 |
終了ページ: | 9 |
抄録: | In our previous paper, we gave an explicit description of an abelian quotient of the symplectic derivation Lie algebra mathfrak{h}_{g, 1} of the free Lie algebra generated by the fundamental representation of mathrm{S}mathrm{p}(2g, mathbb{Q}). This abelian quotient is 1-dimensional and lives in weight 12 part. Here we show that the corresponding quotient map C : mathfrak{h}_{g, 1}(12) rightarrow mathbb{Q} factors through the Enomoto-Satoh map ES_{12} of degree 12. |
URI: | http://hdl.handle.net/2433/241862 |
出現コレクション: | 2062 離散群と双曲空間のトポロジーと解析 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。