このアイテムのアクセス数: 71
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2077-02.pdf | 910.75 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Shimamoto, Naoya | en |
dc.contributor.alternative | 島本, 直弥 | ja |
dc.contributor.transcription | シマモト, ナオヤ | - |
dc.date.accessioned | 2019-06-24T02:54:57Z | - |
dc.date.available | 2019-06-24T02:54:57Z | - |
dc.date.issued | 2018-07 | - |
dc.identifier.issn | 1880-2818 | - |
dc.identifier.uri | http://hdl.handle.net/2433/242095 | - |
dc.description.abstract | Let G be a reductive group, P be its parabolic subgroup, and H be a closed subgroup of G. There are several studies on the orbit decomposition of the flag variety G/P by the H-action, and these studies are expected to play an important role in various problems such as branching problem of G with respect to H. In thib note, we focus on explicit descriptions of the orbit decomposition of a multiple flag variety (Gtimes Gtimes cdots times G)/(P_{1} times P_{2} times cdots times P_{m}) by the diagonal action of G. Now, let G be a general linear group on an algebraically closed field with characteristic 0. Magyar-Weyman-Zelevinsky proved that there are only finitely many orbits only if mleq 3. Furthermore, they also classificd all tuples (P_{1}, P2, ..., P_{m}) of parabolic subgroups where the number of orbits are finite, and gave explicit orbit decompositions for these cases. The aim of this note is to give an explicit description of the orbit decomposition for mgeq 4, the case where infinitely many orbits exist. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | 京都大学数理解析研究所 | ja |
dc.publisher.alternative | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.subject.ndc | 410 | - |
dc.title | Description of infinite orbits on multiple flag varieties of type A (Representation Theory and Related Areas) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AN00061013 | - |
dc.identifier.jtitle | 数理解析研究所講究録 | ja |
dc.identifier.volume | 2077 | - |
dc.identifier.spage | 10 | - |
dc.identifier.epage | 21 | - |
dc.textversion | publisher | - |
dc.sortkey | 02 | - |
dc.address | Graduate School of Mathematical Sciences, The University of Tokyo | en |
dc.address.alternative | 東京大学 | ja |
dcterms.accessRights | open access | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku | en |
出現コレクション: | 2077 表現論とその周辺分野の広がり |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。