このアイテムのアクセス数: 278

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
transfun.E101.A.1092.pdf9.48 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorYAMAMORI, Satoshien
dc.contributor.authorHIROMOTO, Masayukien
dc.contributor.authorSATO, Takashien
dc.contributor.alternative山森, 聡ja
dc.contributor.alternative廣本, 正之ja
dc.contributor.alternative佐藤, 高史ja
dc.date.accessioned2019-06-25T06:08:23Z-
dc.date.available2019-06-25T06:08:23Z-
dc.date.issued2018-07-01-
dc.identifier.issn0916-8508-
dc.identifier.issn1745-1337-
dc.identifier.urihttp://hdl.handle.net/2433/242229-
dc.description.abstractWe propose an efficient training method for memristor neural networks. The proposed method is suitable for the mini-batch-based training, which is a common technique for various neural networks. By integrating the two processes of gradient calculation in the backpropagation algorithm and weight update in the write operation to the memristors, the proposed method accelerates the training process and also eliminates the external computing resources required in the existing method, such as multipliers and memories. Through numerical experiments, we demonstrated that the proposed method achieves twice faster convergence of the training process than the existing method, while retaining the same level of the accuracy for the classification results.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisher電子情報通信学会ja
dc.publisher.alternativeInstitute of Electronics, Information and Communications Engineers (IEICE)en
dc.rights© 2018 The Institute of Electronics, Information and Communication Engineers 許諾条件に基づいて掲載しています。en
dc.subjectmemoristoren
dc.subjectneural networken
dc.subjectmini-batch trainingen
dc.subjectstochastic gradient descenten
dc.titleEfficient Mini-batch Training on Memristor Neural Network Integrating Gradient Calculation and Weight Updateen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciencesen
dc.identifier.volumeE101-A-
dc.identifier.issue7-
dc.identifier.spage1092-
dc.identifier.epage1100-
dc.relation.doi10.1587/transfun.E101.A.1092-
dc.textversionpublisher-
dc.addressDepartment of Communications and Computer Engineering, School of Informatics, Kyoto Universityen
dc.addressDepartment of Communications and Computer Engineering, School of Informatics, Kyoto Universityen
dc.addressDepartment of Communications and Computer Engineering, School of Informatics, Kyoto Universityen
dcterms.accessRightsopen access-
datacite.awardNumber26730027-
datacite.awardNumber17H01713-
dc.identifier.pissn0916-8508-
dc.identifier.eissn1745-1337-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。