このアイテムのアクセス数: 278
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
transfun.E101.A.1092.pdf | 9.48 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | YAMAMORI, Satoshi | en |
dc.contributor.author | HIROMOTO, Masayuki | en |
dc.contributor.author | SATO, Takashi | en |
dc.contributor.alternative | 山森, 聡 | ja |
dc.contributor.alternative | 廣本, 正之 | ja |
dc.contributor.alternative | 佐藤, 高史 | ja |
dc.date.accessioned | 2019-06-25T06:08:23Z | - |
dc.date.available | 2019-06-25T06:08:23Z | - |
dc.date.issued | 2018-07-01 | - |
dc.identifier.issn | 0916-8508 | - |
dc.identifier.issn | 1745-1337 | - |
dc.identifier.uri | http://hdl.handle.net/2433/242229 | - |
dc.description.abstract | We propose an efficient training method for memristor neural networks. The proposed method is suitable for the mini-batch-based training, which is a common technique for various neural networks. By integrating the two processes of gradient calculation in the backpropagation algorithm and weight update in the write operation to the memristors, the proposed method accelerates the training process and also eliminates the external computing resources required in the existing method, such as multipliers and memories. Through numerical experiments, we demonstrated that the proposed method achieves twice faster convergence of the training process than the existing method, while retaining the same level of the accuracy for the classification results. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | 電子情報通信学会 | ja |
dc.publisher.alternative | Institute of Electronics, Information and Communications Engineers (IEICE) | en |
dc.rights | © 2018 The Institute of Electronics, Information and Communication Engineers 許諾条件に基づいて掲載しています。 | en |
dc.subject | memoristor | en |
dc.subject | neural network | en |
dc.subject | mini-batch training | en |
dc.subject | stochastic gradient descent | en |
dc.title | Efficient Mini-batch Training on Memristor Neural Network Integrating Gradient Calculation and Weight Update | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences | en |
dc.identifier.volume | E101-A | - |
dc.identifier.issue | 7 | - |
dc.identifier.spage | 1092 | - |
dc.identifier.epage | 1100 | - |
dc.relation.doi | 10.1587/transfun.E101.A.1092 | - |
dc.textversion | publisher | - |
dc.address | Department of Communications and Computer Engineering, School of Informatics, Kyoto University | en |
dc.address | Department of Communications and Computer Engineering, School of Informatics, Kyoto University | en |
dc.address | Department of Communications and Computer Engineering, School of Informatics, Kyoto University | en |
dcterms.accessRights | open access | - |
datacite.awardNumber | 26730027 | - |
datacite.awardNumber | 17H01713 | - |
dc.identifier.pissn | 0916-8508 | - |
dc.identifier.eissn | 1745-1337 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。