このアイテムのアクセス数: 82
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
B58-05.pdf | 4.85 MB | Adobe PDF | 見る/開く |
タイトル: | Subball complexity and Sturmian colorings of regular trees (Natural extension of arithmetic algorithms and S-adic system) |
著者: | Kim, Dong Han |
キーワード: | 37E25 68R15 trees colorings of trees subword complexity Sturmian word Sturmian coloring |
発行日: | Jul-2016 |
出版者: | Research Institute for Mathematical Sciences, Kyoto University |
誌名: | 数理解析研究所講究録別冊 |
巻: | B58 |
開始ページ: | 85 |
終了ページ: | 96 |
抄録: | The subball complexity of colorings of regular trees is a generalized of the subword complexity or factor complexity of infinite words. The Sturmian word which exhibits the smallest subword complexity among non-eventually periodic word can be obtained in geometric way using the irrational circle rotation or the projection of a line of irrational slope. We survey the Sturmian coloring or trees and the subball complexity of colorings of a tree associated to isometries of the hyperbolic plane with a tessellation of the hyperbolic plane. |
記述: | "Natural extension of arithmetic algorithms and S-adic system". July 20~24, 2015. edited by Shigeki Akiyama. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed. |
著作権等: | © 2016 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. |
URI: | http://hdl.handle.net/2433/243579 |
出現コレクション: | B58 Natural extension of arithmetic algorithms and S-adic system |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。