このアイテムのアクセス数: 178
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
B61-01.pdf | 2.29 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Aoki, Takashi | en |
dc.contributor.author | Takahashi, Toshinori | en |
dc.contributor.author | Tanda, Mika | en |
dc.contributor.alternative | アオキ, タカシ | ja |
dc.contributor.alternative | タカハシ, トシノリ | ja |
dc.contributor.alternative | タンダ, ミカ | ja |
dc.contributor.transcription | アオキ, タカシ | ja-Kana |
dc.contributor.transcription | タカハシ, トシノリ | ja-Kana |
dc.contributor.transcription | タンダ, ミカ | ja-Kana |
dc.date.accessioned | 2019-08-26T00:29:49Z | - |
dc.date.available | 2019-08-26T00:29:49Z | - |
dc.date.issued | 2017-01 | - |
dc.identifier.issn | 1881-6193 | - |
dc.identifier.uri | http://hdl.handle.net/2433/243623 | - |
dc.description | "Microlocal Analysis and Singular Perturbation Theory". October 5~9, 2015. edited by Yoshitsugu Takei, Takashi Aoki, Naofitmi Honda, Kiyoomi Kataoka and Tatsuya Koike. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed. | en |
dc.description.abstract | The hypergeometric function has three parameters. In these parameters, a large parameter is introduced so that the three parameters are linear forms of the large parameter. Thus obtained function satisfies the hypergeometric differential equation with the large parameter and the equation has formal solutions called WKB solutions. In this announcement paper, the relation between the hypergeometric function and the Borel sum of WKB solutions is investigated. Proofs and details will be given in our forthcoming paper. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.publisher.alternative | 京都大学数理解析研究所 | ja |
dc.rights | © 2017 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. | en |
dc.subject | 33C05 | en |
dc.subject | 34M60 | en |
dc.subject | 34M40 | en |
dc.subject | hypergeometric differential equation | en |
dc.subject | hypergeometric function | en |
dc.subject | WKB solution | en |
dc.subject | Stokes curve | en |
dc.subject.ndc | 410 | - |
dc.title | Relation between the hypergeometric function and WKB solutions (Microlocal Analysis and Singular Perturbation Theory) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AA12196120 | - |
dc.identifier.jtitle | 数理解析研究所講究録別冊 | ja |
dc.identifier.volume | B61 | - |
dc.identifier.spage | 1 | - |
dc.identifier.epage | 7 | - |
dc.textversion | publisher | - |
dc.sortkey | 01 | - |
dc.address | School of Science and Engineering, Kindai University | en |
dc.address | Interdisciplinary Graduate School of Science and Engineering, Kindai University | en |
dc.address | Kansai Medical University | en |
dcterms.accessRights | open access | - |
datacite.awardNumber | 26400126 | - |
dc.identifier.pissn | 1881-6193 | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku Bessatsu | en |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
出現コレクション: | B61 Microlocal Analysis and Singular Perturbation Theory |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。