このアイテムのアクセス数: 88

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
B61-07.pdf6.23 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorLaurent, Yvesen
dc.date.accessioned2019-08-26T00:29:50Z-
dc.date.available2019-08-26T00:29:50Z-
dc.date.issued2017-01-
dc.identifier.issn1881-6193-
dc.identifier.urihttp://hdl.handle.net/2433/243629-
dc.description"Microlocal Analysis and Singular Perturbation Theory". October 5~9, 2015. edited by Yoshitsugu Takei, Takashi Aoki, Naofitmi Honda, Kiyoomi Kataoka and Tatsuya Koike. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed.en
dc.description.abstractA holonomic D-module on a complex analytic manifold admits always a b-function along any submanifold. If the module is regular, it admits also a regular b-function, that is a bfunction with a condition on the order of the lower terms of the equation. There is a weaker condition of regularity: regularity along a submanifold. We prove that a module which is regular along a submanifold admits a regular b-function along this submanifold.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.publisher.alternative京都大学数理解析研究所ja
dc.rights© 2017 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.en
dc.subject35A27en
dc.subjectD-moduleen
dc.subjectregularityen
dc.subjectb-functionen
dc.subject.ndc410-
dc.titleRegularity and $b$-functions for $D$-modules (Microlocal Analysis and Singular Perturbation Theory)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAA12196120-
dc.identifier.jtitle数理解析研究所講究録別冊ja
dc.identifier.volumeB61-
dc.identifier.spage109-
dc.identifier.epage122-
dc.textversionpublisher-
dc.sortkey07-
dc.addressInstitut Fourier Mathématiques, UMR 5582, CNRS/UJFen
dcterms.accessRightsopen access-
dc.identifier.pissn1881-6193-
dc.identifier.jtitle-alternativeRIMS Kokyuroku Bessatsuen
出現コレクション:B61 Microlocal Analysis and Singular Perturbation Theory

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。