このアイテムのアクセス数: 86
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
B65-07.pdf | 11.6 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Hakim, Denny Ivanal | en |
dc.contributor.author | Nakamura, Shohei | en |
dc.contributor.author | Sawano, Yoshihiro | en |
dc.contributor.alternative | ナカムラ, ショウヘイ | ja |
dc.contributor.alternative | サワノ, ヨシヒロ | ja |
dc.contributor.transcription | ナカムラ, ショウヘイ | ja-Kana |
dc.contributor.transcription | サワノ, ヨシヒロ | ja-Kana |
dc.date.accessioned | 2019-08-26T00:30:05Z | - |
dc.date.available | 2019-08-26T00:30:05Z | - |
dc.date.issued | 2017-05 | - |
dc.identifier.issn | 1881-6193 | - |
dc.identifier.uri | http://hdl.handle.net/2433/243684 | - |
dc.description | "Harmonic Analysis and Nonlinear Partial Differential Equations". July 4~6, 2016. edited by Hideo Kubo and Hideo Takaoka. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed. | en |
dc.description.abstract | The aim of this paper is to address two difficult problems of the Morrey spaces. One is the complex interpolation and another is the behavior of the Hardy-Littlewood maximal operator. Weighted Morrey spaces are difficult to handle due to the following reasons: 1. They are not reflexive. 2. Unlike Lebesgue spaces, there are many non-trivial closed linear subspaces. 3. The norm of the indicator function of the cubes is difficult to calculate. Nevertheless, it is possible to calculate the second complex interpolation in some special cases. This will allow us to calculate the complex interpolations in such cases. Although we can not always calculate the norm of the indicator function of the cubes, the boundedness of the Hardy-Littlewood maximal operator makes this possible. In this connection, the first half of this artile is devoted to the complex interpolation. In the latter half we investigate what happens if the Hardy-Littlewood maximal operator is bounded on weighted Morrey spaces. As an application, we prove what can we say for the class of weights by using the complex interpolation. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.publisher.alternative | 京都大学数理解析研究所 | ja |
dc.rights | © 2017 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. | en |
dc.subject | 42B35 | en |
dc.subject | 42B25 | en |
dc.subject | 26A33 | en |
dc.subject | Complex interpolation | en |
dc.subject | weighted Morry spaces | en |
dc.subject | Hardy-Littlewood maximal operator | en |
dc.subject.ndc | 410 | - |
dc.title | Weighted Morrey spaces-complex interpolation and the boundedness of the Hardy-Littlewood maximal operator (Harmonic Analysis and Nonlinear Partial Differential Equations) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AA12196120 | - |
dc.identifier.jtitle | 数理解析研究所講究録別冊 | ja |
dc.identifier.volume | B65 | - |
dc.identifier.spage | 109 | - |
dc.identifier.epage | 140 | - |
dc.textversion | publisher | - |
dc.sortkey | 07 | - |
dc.address | Department of Mathematics and Information Sciences, Tokyo Metropolitan University | en |
dc.address | Department of Mathematics and Information Sciences, Tokyo Metropolitan University | en |
dc.address | Department of Mathematics and Information Sciences, Tokyo Metropolitan University | en |
dcterms.accessRights | open access | - |
datacite.awardNumber | 21740104 | - |
dc.identifier.pissn | 1881-6193 | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku Bessatsu | en |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
出現コレクション: | B65 Harmonic Analysis and Nonlinear Partial Differential Equations |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。