このアイテムのアクセス数: 142

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
B68-03.pdf13.06 MBAdobe PDF見る/開く
タイトル: Desingularization of multiple zeta-functions of generalized Hurwitz-Lerch type and evaluation of $p$-adic multiple $L$-functions at arbitrary integers (Various aspects of multiple zeta values)
著者: Furusho, Hidekazu
Komori, Yasushi
Matsumoto, Kohji
Tsumura, Hirofumi
著者名の別形: 古庄, 英和
小森, 靖
松本, 耕二
津村, 博文
キーワード: 11M32
11S40
11G55
multiple zeta-function
multiple polylogarithm
desingularization
p-adic multiple L-function
p-adic multiple polylogarithm
発行日: Oct-2017
出版者: Research Institute for Mathematical Sciences, Kyoto University
誌名: 数理解析研究所講究録別冊
巻: B68
開始ページ: 27
終了ページ: 66
抄録: We study analytic properties of multiple zeta-functions of generalized Hurwitz-Lerch type. First, as a special type of them, we consider multiple zeta-functions of generalized Euler-Zagier-Lerch type and investigate their analytic properties which were already announced in our previous paper. Next we give 'desingularization' of multiple zeta-functions of generalized Hurwitz-Lerch type, which include those of generalized Euler-Zagier-Lerch type, the Mordell-Tornheim type, and so on. As a result, the desingularized multiple zeta-function turns out to be an entire function and can be expressed as a finite sum of ordinary multiple zeta-functions of the same type. As applications, we explicitly compute special values of desingularized double zeta-functions of Euler-Zagier type. We also extend our previous results concerning a relationship between p-adic multiple L-functions and p-adic multiple star polylogarithms to more general indices with arbitrary (not necessarily all positive) integers.
記述: "Various aspects of multiple zeta values". July 23~26, 2013. edited by Kentaro Ihara. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed.
著作権等: © 2017 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
URI: http://hdl.handle.net/2433/243716
出現コレクション:B68 Various aspects of multiple zeta values

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。