このアイテムのアクセス数: 356

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
BHI.2019.8834454.pdf932.42 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorWu, Shuqiongen
dc.contributor.authorNakao, Megumien
dc.contributor.authorTokuno, Junkoen
dc.contributor.authorChen-Yoshikawa, Toyofumien
dc.contributor.authorMatsuda, Tetsuyaen
dc.contributor.alternative武, 淑瓊ja
dc.contributor.alternative中尾, 恵ja
dc.contributor.alternative徳野, 純子ja
dc.contributor.alternative陳, 豊史ja
dc.contributor.alternative松田, 哲也ja
dc.date.accessioned2019-10-28T06:08:07Z-
dc.date.available2019-10-28T06:08:07Z-
dc.date.issued2019-05-
dc.identifier.issn2641-3590-
dc.identifier.issn2641-3604-
dc.identifier.urihttp://hdl.handle.net/2433/244390-
dc.description2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 19-22 May 2019en
dc.description.abstractThree-dimensional (3D) shape reconstruction is particularly important for computer assisted medical systems, especially in the case of lung surgeries, where large deaeration deformation occurs. Recently, 3D reconstruction methods based on machine learning techniques have achieved considerable success in computer vision. However, it is difficult to apply these approaches to the medical field, because the collection of a massive amount of clinic data for training is impractical. To solve this problem, this paper proposes a novel 3D shape reconstruction method that adopts both data augmentation techniques and convolutional neural networks. In the proposed method, a deformable statistical model of the 3D lungs is designed to augment various training data. As the experimental results demonstrate, even with a small database, the proposed method can realize 3D shape reconstruction for lungs during a deaeration deformation process from only one captured 2D image. Moreover, the proposed data augmentation technique can also be used in other fields where the training data are insufficient.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherIEEEen
dc.rights© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en
dc.rightsThe full-text file will be made open to the public on 1 May 2021 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version.en
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.subjectCNNen
dc.subjectdeaeration deformationen
dc.subjectmachine learningen
dc.subjectdata augmentationen
dc.subject3D shape reconstructionen
dc.titleReconstructing 3d lung shape from a single 2d image during the deaeration deformation process using model-based data augmentationen
dc.typeconference paper-
dc.type.niitypeConference Paper-
dc.identifier.jtitle2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)en
dc.relation.doi10.1109/BHI.2019.8834454-
dc.textversionauthor-
dc.identifier.artnum8834454-
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressKyoto University Hospitalen
dc.addressKyoto University Hospitalen
dc.addressGraduate School of Informatics, Kyoto Universityen
dcterms.accessRightsopen access-
datacite.date.available2021-05-01-
dc.identifier.pissn2641-3590-
dc.identifier.eissn2641-3604-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。