このアイテムのアクセス数: 105

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
B74-04.pdf6.05 MBAdobe PDF見る/開く
タイトル: Remarks on the probabilistic well-posedness for quadratic nonlinear Schrodinger equations (Harmonic Analysis and Nonlinear Partial Differential Equations)
著者: Okamoto, Mamoru
著者名の別形: オカモト, マモル
キーワード: 35Q55
発行日: Apr-2019
出版者: Research Institute for Mathematical Sciences, Kyoto University
誌名: 数理解析研究所講究録別冊
巻: B74
開始ページ: 47
終了ページ: 64
抄録: We consider the Cauchy problem for the quadratic nonlinear Schrodinger equation without gauge invariance: ipartial_{t}u+Delta u= |u|^{2} . First, we show the probabilistic well‐posedness in H^{s}(mathbb{R}^{d}) for d geq 5 and frac{d-3}{d-2}s_{c} < s < s_{c} , where s_{c} := frac{d}{2} -2 is the scaling critical regularity. Second, as in the paper of Bényi et al., by performing a fixed point argument around the higher order expansion, we improve the regularity threshold for almost sure local well‐posedness, i.e., frac{d-3}{d-2}s_{c} is replaced by frac{d-4}{d-3}s_{c}.
記述: "Harmonic Analysis and Nonlinear Partial Differential Equations". June 25-27, 2018. edited by Hideo Takaoka and Satoshi Masaki. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed.
著作権等: © 2019 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
URI: http://hdl.handle.net/2433/244761
出現コレクション:B74 Harmonic Analysis and Nonlinear Partial Differential Equations

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。