このアイテムのアクセス数: 175
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
B75-10.pdf | 2.84 MB | Adobe PDF | 見る/開く |
タイトル: | A note on $G_q$-summability of formal solutions of some linear $q$-difference-differential equations (New development of microlocal analysis and singular perturbation theory) |
著者: | TAHARA, Hidetoshi YAMAZAWA, Hiroshi |
著者名の別形: | タハラ, ヒデトシ ヤマザワ, ヒロシ |
キーワード: | 35A01 35C20 39A13 q-difference-differential equations summability formal power series solutions q-Gevrey asymptotic expansions |
発行日: | Jun-2019 |
出版者: | Research Institute for Mathematical Sciences, Kyoto University |
誌名: | 数理解析研究所講究録別冊 |
巻: | B75 |
開始ページ: | 113 |
終了ページ: | 121 |
抄録: | Let q > 1 and delta > 0 . For a function f(t, z) , the q-shift operator sigma_{q} in t is defined by sigma_{q}(f)(t, z) = f(qt, z). This article discusses a linear q-difference-differential equation sum_{j+delta|alpha|leq m}a_{j, alpha}(t, z)(sigma_{q})^{j}partial_{z} ^{alpha}X = F(t, z) in the complex domain, and shows a result on the Gq-summability of formal solutions (which may be divergent) in the framework of q-Laplace and q-Borel transforms by Ramis-Zhang. |
記述: | "New development of microlocal analysis and singular perturbation theory". October 3-7, 2016. edited by Naofumi Honda and Yasunori Okada. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed. |
著作権等: | © 2019 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. |
URI: | http://hdl.handle.net/2433/244775 |
出現コレクション: | B75 New development of microlocal analysis and singular perturbation theory |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。