このアイテムのアクセス数: 211
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
PhysRevB.99.214108.pdf | 936.09 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Seko, Atsuto | en |
dc.contributor.author | Togo, Atsushi | en |
dc.contributor.author | Tanaka, Isao | en |
dc.contributor.alternative | 世古, 敦人 | ja |
dc.contributor.alternative | 東後, 篤史 | ja |
dc.contributor.alternative | 田中, 功 | ja |
dc.date.accessioned | 2019-11-21T06:06:07Z | - |
dc.date.available | 2019-11-21T06:06:07Z | - |
dc.date.issued | 2019-06-26 | - |
dc.identifier.issn | 2469-9950 | - |
dc.identifier.issn | 2469-9969 | - |
dc.identifier.uri | http://hdl.handle.net/2433/244819 | - |
dc.description.abstract | Many rotational invariants for crystal structure representations have been used to describe the structure-property relationship by machine learning. The machine learning interatomic potential (MLIP) is one of the applications of rotational invariants, which provides the relationship between the energy and the crystal structure. Therefore, the enumeration of rotational invariants should be useful for constructing MLIPs with the desired accuracy. In this study, we introduce high-order linearly independent rotational invariants up to the sixth order based on spherical harmonics and apply them to linearized MLIPs for elemental aluminum. A set of rotational invariants is derived by the general process of reducing the Kronecker products of irreducible representations for the SO(3) group using a group-theoretical projector method. A high predictive power for a wide range of structures is accomplished by using high-order invariants with low-order invariants equivalent to pair and angular structural features. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | American Physical Society (APS) | en |
dc.rights | ©2019 American Physical Society | en |
dc.title | Group-theoretical high-order rotational invariants for structural representations: Application to linearized machine learning interatomic potential | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Physical Review B | en |
dc.identifier.volume | 99 | - |
dc.identifier.issue | 21 | - |
dc.relation.doi | 10.1103/physrevb.99.214108 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 214108 | - |
dcterms.accessRights | open access | - |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。