ダウンロード数: 187

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
acsaem.9b00176.pdf1.09 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorHwang, Jinkwangen
dc.contributor.authorMatsumoto, Kazuhikoen
dc.contributor.authorHagiwara, Rikaen
dc.contributor.alternative松本, 一彦ja
dc.contributor.alternative萩原, 理加ja
dc.date.accessioned2019-12-17T06:12:32Z-
dc.date.available2019-12-17T06:12:32Z-
dc.date.issued2019-04-22-
dc.identifier.issn2574-0962-
dc.identifier.urihttp://hdl.handle.net/2433/245176-
dc.description.abstractPractical sodium secondary batteries require high power, high energy density, and long cyclability. The NASICON-type Na₃V₂PO₄)₃(NVP) is often investigated as a positive electrode material due to its high operation voltage, structural stability, and high Na⁺ ion conductivity. To overcome its low electronic conductivity, NVP requires carbon-coating or the addition of conductive materials for practical use. In this study, carbon nanofibers (CNFs) are incorporated as a conductive material along with glucose for carbon coating and fixing CNF frames to NVP particles. Uniform NVP composite and CNFs network (NVPC@CNFs) are obtained by a combination of sonication and the sol–gel method. Electrochemical measurements using a high mass loading electrode around ∼8.5 mg-active material cm⁻² and Na[FSA]-[C₂C₁im = 1-ethyl-3-methylimidazolium, FSA = bis(fluorosulfonyl)amide) ionic liquid electrolyte suggest safe operations of sodium secondary batteries up to intermediate temperatures (∼373 K). The rate performance further improved by using the NVPC@CNFs compared to NVPC and exhibited a high rate capability (at high geometric current density) of 51.1 mAh g⁻¹ at 10C (10.0 mA cm⁻²) at 298 K and 82.3 mAh g⁻¹ at 100C (100 mA cm⁻²) at 363 K (1C = 118 mA g⁻¹, 1.00 mA cm⁻²). Furthermore, this material with an ionic liquid electrolyte exhibited superior Coulombic efficiencies over 3000 cycles of 99.9%. Electrochemical measurements (electrical impedance spectroscopy, charge–discharge test, cycle test, and rate performance test) clarify the electrochemical characteristics of this material.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Chemical Societyen
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Energy Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsaem.9b00176.en
dc.rightsThe full-text file will be made open to the public on 26 March 2020 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version.en
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.subjectsodium secondary batteryen
dc.subjectNASICONen
dc.subjectcarbon nanofiberen
dc.subjecthigh mass loading electrodeen
dc.subjectionic liquiden
dc.titleNa₃V₂(PO₄)₃@Carbon Nanofibers: High Mass Loading Electrode Approaching Practical Sodium Secondary Batteries Utilizing Ionic Liquid Electrolytesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleACS Applied Energy Materialsen
dc.identifier.volume2-
dc.identifier.issue4-
dc.identifier.spage2818-
dc.identifier.epage2827-
dc.relation.doi10.1021/acsaem.9b00176-
dc.textversionauthor-
dc.addressGraduate School of Energy Science, Kyoto Universityen
dc.addressGraduate School of Energy Science, Kyoto University・Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto Universityen
dc.addressGraduate School of Energy Science, Kyoto University・Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto Universityen
dcterms.accessRightsopen access-
datacite.date.available2020-03-26-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。