このアイテムのアクセス数: 107
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
ptep_pty041.pdf | 673.69 kB | Adobe PDF | 見る/開く |
タイトル: | Topological susceptibility of QCD with dynamical Möbius domain-wall fermions |
著者: | Aoki, S ![]() ![]() ![]() Cossu, G Fukaya, H Hashimoto, S Kaneko, T |
著者名の別形: | 青木, 愼也 |
キーワード: | B01 Spontaneous symmetry breaking B31 Symmetries and anomalies B38 Lattice field theories B64 Lattice QCD |
発行日: | Apr-2018 |
出版者: | Oxford University Press (OUP) |
誌名: | Progress of Theoretical and Experimental Physics |
巻: | 2018 |
号: | 4 |
論文番号: | 043B07 |
抄録: | We compute the topological susceptibility χt of lattice QCD with 2+1 dynamical quark flavors described by the Möbius domain-wall fermion. Violation of chiral symmetry as measured by the residual mass is kept at ∼1 MeV or smaller. We measure the fluctuation of the topological charge density in a “slab” sub-volume of the simulated lattice using the method proposed by W. Bietenholz, P. de Forcrand, and U. Gerber, J. High Energy Phys. 12, 070 (2015) and W. Bietenholz, K. Cichy, P. de Forcrand, A. Dromard, and U. Gerber, PoS LATTICE 2016, 321 (2016). The quark mass dependence of χt is consistent with the prediction of chiral perturbation theory, from which the chiral condensate is extracted as ΣMS¯¯¯¯¯¯¯¯(2 GeV)=[274(13)(29)MeV]3, where the first error is statistical and the second one is systematic. Combining the results for the pion mass Mπ and decay constant Fπ, we obtain χt=0.229(03)(13)M2πF2π at the physical point. |
著作権等: | © The Author(s) 2018. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Funded by SCOAP3. |
URI: | http://hdl.handle.net/2433/250305 |
DOI(出版社版): | 10.1093/ptep/pty041 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。