このアイテムのアクセス数: 257

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.envpol.2020.114476.pdf1.01 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorAraki, Shinen
dc.contributor.authorShima, Masayukien
dc.contributor.authorYamamoto, Kouheien
dc.contributor.alternative山本, 浩平ja
dc.date.accessioned2020-06-17T04:36:51Z-
dc.date.available2020-06-17T04:36:51Z-
dc.date.issued2020-08-
dc.identifier.issn0269-7491-
dc.identifier.issn1873-6424-
dc.identifier.urihttp://hdl.handle.net/2433/251458-
dc.description.abstractAccurate estimation of historical PM₂.₅ exposures for epidemiological studies is challenging when extensive monitoring data are limited in duration. Here, we develop a national-scale PM₂.₅ exposure model for Japan using measurements recorded between 2014 and 2016 to estimate monthly means for 1987 through 2016. Our objective is to obtain accurate PM₂.₅ estimates for years prior to implementation of extensive PM₂.₅ monitoring, using observations from a limited period. We utilize a neural network to convey the non-linear relationship between the target pollutant and predictors, while incorporating the associated air pollutants. We obtain high R² values of 0.76 and 0.73 through spatial and temporal cross validation, respectively. We evaluate estimation accuracy using an independent data set and achieve an R² of 0.75. Moreover, monthly variations for 2000–2013 are well reproduced with correlation coefficients of greater than 0.78, obtained through a comparison with observations. We estimate monthly means at 1 × 1 km resolution from 1987 through 2016. The estimates show decreases in the area and population weighted means beginning in the 1990s. We successfully estimate monthly mean PM₂.₅ concentrations over three decades with outstanding predictive accuracy. Our findings illustrate that the presented approach achieves accurate long-term historical estimations using observations limited in duration.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).en
dc.subjectAir pollutionen
dc.subjectMachine learningen
dc.subjectTemporal trenden
dc.subjectSpatial distributionen
dc.titleEstimating historical PM₂.₅ exposures for three decades (1987–2016) in Japan using measurements of associated air pollutants and land use regressionen
dc.title.alternative関連大気汚染物質のモニタリング濃度値とLand Use Regressionモデルを用いた日本におけるPM₂.₅の過去30年間(1987–2016年)の曝露量推定ja
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.ncidAA10664567-
dc.identifier.jtitleEnvironmental Pollutionen
dc.identifier.volume263-
dc.identifier.issuePart A-
dc.relation.doi10.1016/j.envpol.2020.114476-
dc.textversionpublisher-
dc.identifier.artnum114476-
dc.addressGraduate School of Engineering, Osaka Universityen
dc.addressDepartment of Public Health, Hyogo College of Medicineen
dc.addressGraduate School of Energy Science, Kyoto Universityen
dc.identifier.pmid33618487-
dcterms.accessRightsopen access-
datacite.awardNumber19K12370-
datacite.awardNumber18H03060-
dc.identifier.pissn0269-7491-
dc.identifier.eissn1873-6424-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。