このアイテムのアクセス数: 257
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.envpol.2020.114476.pdf | 1.01 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Araki, Shin | en |
dc.contributor.author | Shima, Masayuki | en |
dc.contributor.author | Yamamoto, Kouhei | en |
dc.contributor.alternative | 山本, 浩平 | ja |
dc.date.accessioned | 2020-06-17T04:36:51Z | - |
dc.date.available | 2020-06-17T04:36:51Z | - |
dc.date.issued | 2020-08 | - |
dc.identifier.issn | 0269-7491 | - |
dc.identifier.issn | 1873-6424 | - |
dc.identifier.uri | http://hdl.handle.net/2433/251458 | - |
dc.description.abstract | Accurate estimation of historical PM₂.₅ exposures for epidemiological studies is challenging when extensive monitoring data are limited in duration. Here, we develop a national-scale PM₂.₅ exposure model for Japan using measurements recorded between 2014 and 2016 to estimate monthly means for 1987 through 2016. Our objective is to obtain accurate PM₂.₅ estimates for years prior to implementation of extensive PM₂.₅ monitoring, using observations from a limited period. We utilize a neural network to convey the non-linear relationship between the target pollutant and predictors, while incorporating the associated air pollutants. We obtain high R² values of 0.76 and 0.73 through spatial and temporal cross validation, respectively. We evaluate estimation accuracy using an independent data set and achieve an R² of 0.75. Moreover, monthly variations for 2000–2013 are well reproduced with correlation coefficients of greater than 0.78, obtained through a comparison with observations. We estimate monthly means at 1 × 1 km resolution from 1987 through 2016. The estimates show decreases in the area and population weighted means beginning in the 1990s. We successfully estimate monthly mean PM₂.₅ concentrations over three decades with outstanding predictive accuracy. Our findings illustrate that the presented approach achieves accurate long-term historical estimations using observations limited in duration. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier BV | en |
dc.rights | © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/). | en |
dc.subject | Air pollution | en |
dc.subject | Machine learning | en |
dc.subject | Temporal trend | en |
dc.subject | Spatial distribution | en |
dc.title | Estimating historical PM₂.₅ exposures for three decades (1987–2016) in Japan using measurements of associated air pollutants and land use regression | en |
dc.title.alternative | 関連大気汚染物質のモニタリング濃度値とLand Use Regressionモデルを用いた日本におけるPM₂.₅の過去30年間(1987–2016年)の曝露量推定 | ja |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.ncid | AA10664567 | - |
dc.identifier.jtitle | Environmental Pollution | en |
dc.identifier.volume | 263 | - |
dc.identifier.issue | Part A | - |
dc.relation.doi | 10.1016/j.envpol.2020.114476 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 114476 | - |
dc.address | Graduate School of Engineering, Osaka University | en |
dc.address | Department of Public Health, Hyogo College of Medicine | en |
dc.address | Graduate School of Energy Science, Kyoto University | en |
dc.identifier.pmid | 33618487 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 19K12370 | - |
datacite.awardNumber | 18H03060 | - |
dc.identifier.pissn | 0269-7491 | - |
dc.identifier.eissn | 1873-6424 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。