このアイテムのアクセス数: 53

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2084-02.pdf1.37 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorFukuzaki, Kenjien
dc.contributor.alternative福崎, 賢治ja
dc.contributor.transcriptionフクザキ, ケンジ-
dc.date.accessioned2020-06-19T04:17:48Z-
dc.date.available2020-06-19T04:17:48Z-
dc.date.issued2018-08-
dc.identifier.issn1880-2818-
dc.identifier.urihttp://hdl.handle.net/2433/251525-
dc.description.abstractLet mathbb{Z}^{tr} be the ring of all totally real algebraic integers in mathbb{C}. We consider (un)decidability of its subrings of infinite degree over mathbb{Q}. Julia Robinson [Ro] proved that mathbb{Z} is first order definable (without parameters) in mathbb{Z}^{tr}, thus showed that it is undecidable. Moreover she showed undecidability of the rings of (algebraic) integers of any subfield of mathbb{Q} ({sqrt{p}|p prime}) also by showing the definability of mathbb{Z} in those rings. From her remark in [Ro], it seems that we may conjecture that all subrings of mathbb{Z}^{tr} are undecidable. We survey recent progress on this problem. We note that rings of algebraic integers of finite degree over mathbb{Q} are undecidable. This fact is also proved in [Ro].en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleA survey of undecidability problems of rings of totally real algebraic integers (Model theoretic aspects of the notion of independence and dimension)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2084-
dc.identifier.spage7-
dc.identifier.epage9-
dc.textversionpublisher-
dc.sortkey02-
dc.addressThe International University of Kagoshimaen
dc.address.alternative鹿児島国際大学ja
dcterms.accessRightsopen access-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
出現コレクション:2084 モデル理論における独立概念と次元の研究

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。