ダウンロード数: 50
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2093-03.pdf | 13.43 MB | Adobe PDF | 見る/開く |
タイトル: | On the effects of spatial expansion and contraction on several semilinear partial differential equations (Nonlinear Wave and Dispersive Equations) |
著者: | Nakamura, Makoto |
著者名の別形: | 中村, 誠 |
発行日: | Nov-2018 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2093 |
開始ページ: | 27 |
終了ページ: | 37 |
抄録: | The derivation of several second order partial differential equations is considered based on the scalar-field equation and its non-relativistic limit in the uniform and isotropic space. The field equation is derived as the Euler-Lagrange equation for a Lagrangian given in the spacetime which is a solution of the Einstein equation for non-Hermitian line elements. Some results on the Cauchy problem of the limit equation are introduced. The derivation of some equations for vectors and their energy estimates are also introduced. A dissipative property of the spatial expansion is remarked. |
URI: | http://hdl.handle.net/2433/251671 |
出現コレクション: | 2093 非線形波動・分散型方程式 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。