このアイテムのアクセス数: 100

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2131-21.pdf277.86 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKATSURADA, MASANORIen
dc.contributor.alternative桂田, 昌紀ja
dc.contributor.transcriptionカツラダ, マサノリ-
dc.date.accessioned2020-09-29T05:52:04Z-
dc.date.available2020-09-29T05:52:04Z-
dc.date.issued2019-10-
dc.identifier.issn1880-2818-
dc.identifier.urihttp://hdl.handle.net/2433/254778-
dc.description.abstractLet s be a complex variables, z a complex parameter, and a and λ real parameters with a > 0, and write e(s) = e2πis. The Lerch zeta-function φ(s, a, λ) is defined by the Dirichlet series Σ∞ l=0 e(λl)(a + l)−s (Res > 1), and its meromorphic continuation over the whole s-plane; this reduces to the Hurwitz zeta-function ζ(s, a) if λ is an integer, and further to the Riemann zeta-function ζ(s) = ζ(s, 1). Note that the domain of the parameter a can be extended through the procedure in [13]. Let φ(m)(s, z, λ) = (∂/∂s)mφ(s, z, λ) for m = 0, 1, 2, . . . denote any derivative. The aim of this paper is to show that complete asymptotic expansions exist for φ(m)(s, a + z, λ) (m = 0, 1, . . .) when both z → 0 and z → ∞ through | arg z| < π (Theorems 1 and 2), together with the explicit expressions of their remainders (Corollaries 1.1 and 2.2); these can be applied to deduce the classical Fourier series expansions of the log-gamma function log Γ(s) (Corollary 2.3) and the di-gamma function ψ(s) = (Γ'/Γ)(s) (Corollary 2.4) both for 0 < s < 1, due to Kummer and Lerch, respectively, as well as to deduce the celebrated closed form evaluation of ψ(r) at any rational point r with 0 < r < 1 (Corollary 2.5), due to Gauß. Our results in Theorems 1 and 2 further lead us to define and study a generalization of Deninger's Rm-function (Corollaries 1.4–1.6 and 2.6–2.9), which was first introduced by Deninger [3] for extending the log-gamma function into higher orders. The detailed proofs of our results in the present paper will appear, among other things, in the forthcoming article [21].en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject11M35en
dc.subject33B15en
dc.subjectLerch zeta-functionen
dc.subjectHurwitz zeta-functionen
dc.subjectlog-gamma functionen
dc.subjectdi-gamma functionen
dc.subjectDeninger's functionen
dc.subjecthigher derivativeen
dc.subjectMellin-Barnes integralen
dc.subjectasymptotic expansionen
dc.subjectFourier seriesen
dc.subject.ndc410-
dc.titleASYMPTOTICS FOR HIGHER DERIVATIVES OF THE LERCH ZETA-FUNCTION: APPLICATIONS TO THE FORMULAE OF KUMMER, LERCH AND GAUSS (Analytic Number Theory and Related Topics)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2131-
dc.identifier.spage166-
dc.identifier.epage176-
dc.textversionpublisher-
dc.sortkey21-
dc.addressDepartment of Mathematics, Faculty of Economics, Keio Universityen
dc.address.alternative慶應義塾大学ja
dcterms.accessRightsopen access-
datacite.awardNumber17K05182-
datacite.awardNumber26400021-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:2131 解析的整数論とその周辺

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。