このアイテムのアクセス数: 65
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2136-17.pdf | 10.41 MB | Adobe PDF | 見る/開く |
タイトル: | A motivic approach to Shimura's zeta functions and attached $p$-adic $L$-functions via admissible measures (Automorphic forms, automorphic representations and related topics) |
著者: | PANTCHICHKINE, Alexei |
発行日: | Dec-2019 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2136 |
開始ページ: | 172 |
終了ページ: | 187 |
抄録: | A motivic approach is presented to Shimura's zeta functions Z.(s, f) [47] attched to holomorphic automorphic forms f on unitary groups UK (n, n) over an imaginary quadratic field K=Q(√-Dk). A motivically normalized L-function D(s, f) attached to Z(s, f) is defined in accordance with Deligne's conjectures [14]. An explicit description of Shimura's Г-factors is used. The attached p-adic L-functions of D(s, f) satisfies conjecture of Coates-Perrin-Riou [11] and it is constructed via admissible measures of Amiee-Vélu, see also [31]. The p-ordinary case was treated in [17] via algebraic geometry (method of Katz). The main result is stated in terms of the Hodge polygon PH(t): [0, d] → R and the Newton polygon PN(t) = PN, v(t) : [O, d] → R of the zeta function D(s, f) of degree d = 4n. Main theorem gives a p-adic analytic interpolation of the L values in the form of certain integrals with respect to Mazur-type measures, saisfying Coates-Perrin-Riou conjectures. Both Rankin-Selberg and doubling methods are used. |
URI: | http://hdl.handle.net/2433/254852 |
出現コレクション: | 2136 保型形式, 保型表現とその周辺 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。