このアイテムのアクセス数: 67
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2137-16.pdf | 12.14 MB | Adobe PDF | 見る/開く |
タイトル: | Nonintegrability and Chaos in Hamiltonian Systems with Saddle-Centers (Symmetry and Singularity of Geometric Structures and Differential Equations) |
著者: | Yagasaki, Kazuyuki |
著者名の別形: | 矢ヶ崎, 一幸 |
キーワード: | 37J30 34C28 34C37 34E10 37J40 34M15 37K55 70H07 Nonintegrability chaos Hamiltonian system saddle-center reversible system homoclinic orbit heteroclinic orbit Melnikov method Morales-Ramis theory differential Galois theory |
発行日: | Dec-2019 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2137 |
開始ページ: | 183 |
終了ページ: | 200 |
抄録: | In general, a Hamiltonian system is nonintegrabe if chaotic dynamics occurs. However, chaotic dynamics may not occur even if it is nonintegrable. Here we are interested in the following question: Does chaotic dynamics occur in a Hamiltonian system when it is nonintegrable? We review some previous results related to this question for two-degree-of-freedom Hamiltoniansystems with saddle-centers and homoclinic orbits. We also state some extensions of the results to a higher-order approximation, heteroclinic orbits and more-or infinite-degree-of-freedom systems. In particular, the extended theory shows that Arnold diffusion type motions can occur in three-or more-degree-of-freedom systems. |
URI: | http://hdl.handle.net/2433/254873 |
出現コレクション: | 2137 幾何構造と微分方程式 --対称性と特異点の視点から-- |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。