このアイテムのアクセス数: 94
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2139-02.pdf | 8.09 MB | Adobe PDF | 見る/開く |
タイトル: | A generalized uniformly bounded multiplicity theorem (Developments in Representation Theory and Related Topics) |
著者: | 田内, 大渡 ![]() |
著者名の別形: | Tauchi, Taito |
発行日: | Dec-2019 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2139 |
開始ページ: | 11 |
終了ページ: | 28 |
抄録: | Let P be a minimal parabolic subgroup of a real reductive Lie group G and H a closed subgroup of G. Then it is proved by T. Kobayashi and T. Oshima that the regular representation C∞ (G/H) contains each irreducible representation of G at most finitely many times if the number of H-orbits on G/P is finite. Moreover, they also proved that the multiplicities are uniformly bounded if the number of He-orbits on Gc/B is finite, where Gc, He are complexifications of G, H, respectively, and B is a Borel subgroup of Ge. In this paper, we prove that the multiplicities of the representations of G induced from a parabolic subgroup Q in the regular representation on G/H are uniformly bounded if the number of Heorbits on Gc/Qc is finite. For the proof of this claim, we also prove the uniform boundedness of the dimensions of the spaces of group invariant hyperfunctions using the theory of holonomic Dx-modules. |
URI: | http://hdl.handle.net/2433/254903 |
出現コレクション: | 2139 表現論とその周辺分野の進展 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。