このアイテムのアクセス数: 164

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
978-3-030-11051-2_26.pdf181.16 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKimura, Kakuen
dc.contributor.authorKunimasa, Shutaroen
dc.contributor.authorKusakabe, Youen
dc.contributor.authorIshii, Hirotakeen
dc.contributor.authorShimoda, Hiroshien
dc.contributor.alternative木村, 覚ja
dc.contributor.alternative國政, 秀太郎ja
dc.contributor.alternative日下部, 曜ja
dc.contributor.alternative石井, 裕剛ja
dc.contributor.alternative下田, 宏ja
dc.date.accessioned2020-12-21T07:19:53Z-
dc.date.available2020-12-21T07:19:53Z-
dc.date.issued2019-
dc.identifier.isbn9783030110505-
dc.identifier.urihttp://hdl.handle.net/2433/259834-
dc.descriptionProceedings of the 2nd International Conference on Intelligent Human Systems Integration (IHSI 2019): Integrating People and Intelligent Systems, February 7-10, 2019, San Diego, California, USA.en
dc.descriptionPart of the book series: Advances in Intelligent Systems and Computing (AISC, volume 903)en
dc.description.abstractAlthough recent information society has improved the value of intellectual work productivity, its objective and quantitative evaluation has not been established. It is suggested that intellectual productivity can be indirectly evaluated by estimating intellectual concentration states when giving cognitive load. In this study, therefore, the authors have focused on physiological indices such as pupil diameter and heart rate which are supposed to be closely related to cognitive load in office work, and an estimation method of intellectual concentration states from the measured indices has been proposed. Multiple patterns of classification learning methods such as Decision Tree, Linear Discrimination, SVM, and KNN were employed as the estimation method. Based on the estimation method, an evaluation experiment was conducted where 31 male university students participated and the measured psychological indices were given to the classification learning estimators.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rightsThis is a post-peer-review, pre-copyedit version of an article published in Advances in Intelligent Systems and Computing. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-11051-2_26.en
dc.rightsこの論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。ja
dc.rightsThis is not the published version. Please cite only the published version.en
dc.subjectIntellectual concentration stateen
dc.subjectMachine learningen
dc.subjectPhysiological indicesen
dc.titleAn Estimation Method of Intellectual Concentration State by Machine Learning of Physiological Indicesen
dc.typeconference paper-
dc.type.niitypeConference Paper-
dc.identifier.jtitleAdvances in Intelligent Systems and Computingen
dc.identifier.spage168-
dc.identifier.epage174-
dc.relation.doi10.1007/978-3-030-11051-2_26-
dc.textversionauthor-
dc.addressGraduate School of Energy Science, Kyoto Universityen
dc.addressGraduate School of Energy Science, Kyoto Universityen
dc.addressGraduate School of Energy Science, Kyoto Universityen
dc.addressGraduate School of Energy Science, Kyoto Universityen
dc.addressGraduate School of Energy Science, Kyoto Universityen
dcterms.accessRightsopen access-
datacite.awardNumberJP17H01777-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。