このアイテムのアクセス数: 206
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
sicetr.55.260.pdf | 883.67 kB | Adobe PDF | 見る/開く |
タイトル: | 知的作業中の生理指標計測による作業成績推定手法 |
その他のタイトル: | An Estimation Method of Intellectual Work Performance by Using Physiological Indices |
著者: | 國政, 秀太郎 ![]() 瀬尾, 恭一 ![]() 下田, 宏 ![]() ![]() ![]() 石井, 裕剛 ![]() ![]() ![]() |
著者名の別形: | KUNIMASA, Shuntaro SEO, Kyoichi SHIMODA, Hiroshi ISHII, HIrotake |
キーワード: | intellectual productivity cognitive load physiological index machine learning |
発行日: | 2019 |
出版者: | 計測自動制御学会 |
誌名: | 計測自動制御学会論文集 |
巻: | 55 |
号: | 4 |
開始ページ: | 260 |
終了ページ: | 268 |
抄録: | In order to evaluate the intellectual productivity quantitatively, most conventional studies have utilized task performance of cognitive tasks. Meanwhile, more and more studies use physiological indices which reflect cognitive load so as to evaluate the intellectual productivity quantitatively. In this study, the method which evaluates task performance of intellectual workers by using several physiological indices (pupil diameter and heart rate variability) has been proposed. As estimation models of task performance, two machine learning models, Support Vector Regression (SVR) and Random Forests (RF), have been employed. As the result of a subject experiment, it was found that coefficient of determination (R2) of SVR was 0.875 and higher than that of RF (p<0.01). The result suggested that pupil diameter and heart rate variability were effective as the explanatory variables and SVR was also effective in task performance estimation. |
著作権等: | © 2019 公益社団法人 計測自動制御学会 発行元の許可を得て掲載しています。 |
URI: | http://hdl.handle.net/2433/259840 |
DOI(出版社版): | 10.9746/sicetr.55.260 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。