このアイテムのアクセス数: 265
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
978-3-030-58555-6_26.pdf | 5.85 MB | Adobe PDF | 見る/開く |
タイトル: | Negative Pseudo Labeling Using Class Proportion for Semantic Segmentation in Pathology |
著者: | Tokunaga, Hiroki Iwana, Brian Kenji Teramoto, Yuki Yoshizawa, Akihiko Bise, Ryoma |
著者名の別形: | 吉澤, 明彦 |
キーワード: | Pathological image Semantic segmentation Negative learning Semi-supervised learning Learning from label proportion |
発行日: | 2020 |
出版者: | Springer Nature |
誌名: | Computer Vision – ECCV 2020 |
巻: | 12360 |
開始ページ: | 430 |
終了ページ: | 446 |
抄録: | In pathological diagnosis, since the proportion of the adenocarcinoma subtypes is related to the recurrence rate and the survival time after surgery, the proportion of cancer subtypes for pathological images has been recorded as diagnostic information in some hospitals. In this paper, we propose a subtype segmentation method that uses such proportional labels as weakly supervised labels. If the estimated class rate is higher than that of the annotated class rate, we generate negative pseudo labels, which indicate, “input image does not belong to this negative label, ” in addition to standard pseudo labels. It can force out the low confidence samples and mitigate the problem of positive pseudo label learning which cannot label low confident unlabeled samples. Our method outperformed the state-of-the-art semi-supervised learning (SSL) methods. |
記述: | 16th European Conference, Glasgow, UK, August 23–28, 2020. Part of the Lecture Notes in Computer Science book series (LNCS, volume 12360). Also part of the Image Processing, Computer Vision, Pattern Recognition, and Graphics book sub series (LNIP, volume 12360). |
著作権等: | This is a post-peer-review, pre-copyedit version of an article published in Computer Vision – ECCV 2020. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-030-58555-6_26. The full-text file will be made open to the public on 16 November 2021 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 |
URI: | http://hdl.handle.net/2433/260571 |
DOI(出版社版): | 10.1007/978-3-030-58555-6_26 |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。