このアイテムのアクセス数: 107

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
B77-06.pdf115.38 kBAdobe PDF見る/開く
タイトル: On poly-Euler numbers of the second kind (Algebraic Number Theory and Related Topics 2016)
著者: Komatsu, Takao
著者名の別形: 小松, 尚夫
キーワード: 11B68
05A15
11M41
Euler numbers
poly-Euler numbers
complementary Euler numbers
Euler numbers of the second kind
発行日: Apr-2020
出版者: Research Institute for Mathematical Sciences, Kyoto University
誌名: 数理解析研究所講究録別冊
巻: B77
開始ページ: 143
終了ページ: 158
抄録: For an integer k, define poly-Euler numbers of the second kind Ên(k) (n = 0, 1, ... ) by Lik(1-e -4t)/4 sinh t = ∞Σ n=0 Ên(k) tn/n!. When k = 1, Ên = Ên(1) are Euler numbers of the second kind or complimentary Euler numbers defined by t/sinh t = ∞Σ n=0 Ên tn/n!. Euler numbers of the second kind were introduced as special cases of hypergeometric Euler numbers of the second kind in [7], so that they would supplement hypergeometric Euler numbers. In this paper, we give several properties of Euler numbers of the second kind. In particular, we determine their denominators. We also show several properties of poly-Euler numbers of the second kind, including duality formulae and congruence relations.
記述: "Algebraic Number Theory and Related Topics 2016". November 28 - December 2, 2016. edited by Yasuo Ohno, Hiroshi Tsunogai and Toshiro Hiranouchi. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed.
著作権等: © 2020 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
URI: http://hdl.handle.net/2433/260614
出現コレクション:B77 Algebraic Number Theory and Related Topics 2016

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。