このアイテムのアクセス数: 107
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
B77-06.pdf | 115.38 kB | Adobe PDF | 見る/開く |
タイトル: | On poly-Euler numbers of the second kind (Algebraic Number Theory and Related Topics 2016) |
著者: | Komatsu, Takao |
著者名の別形: | 小松, 尚夫 |
キーワード: | 11B68 05A15 11M41 Euler numbers poly-Euler numbers complementary Euler numbers Euler numbers of the second kind |
発行日: | Apr-2020 |
出版者: | Research Institute for Mathematical Sciences, Kyoto University |
誌名: | 数理解析研究所講究録別冊 |
巻: | B77 |
開始ページ: | 143 |
終了ページ: | 158 |
抄録: | For an integer k, define poly-Euler numbers of the second kind Ên(k) (n = 0, 1, ... ) by Lik(1-e -4t)/4 sinh t = ∞Σ n=0 Ên(k) tn/n!. When k = 1, Ên = Ên(1) are Euler numbers of the second kind or complimentary Euler numbers defined by t/sinh t = ∞Σ n=0 Ên tn/n!. Euler numbers of the second kind were introduced as special cases of hypergeometric Euler numbers of the second kind in [7], so that they would supplement hypergeometric Euler numbers. In this paper, we give several properties of Euler numbers of the second kind. In particular, we determine their denominators. We also show several properties of poly-Euler numbers of the second kind, including duality formulae and congruence relations. |
記述: | "Algebraic Number Theory and Related Topics 2016". November 28 - December 2, 2016. edited by Yasuo Ohno, Hiroshi Tsunogai and Toshiro Hiranouchi. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed. |
著作権等: | © 2020 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. |
URI: | http://hdl.handle.net/2433/260614 |
出現コレクション: | B77 Algebraic Number Theory and Related Topics 2016 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。