このアイテムのアクセス数: 298
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
B78-07.pdf | 440.18 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | 松谷, 茂樹 | ja |
dc.contributor.alternative | Matsutani, Shigeki | en |
dc.contributor.transcription | マツタニ, シゲキ | ja-Kana |
dc.date.accessioned | 2021-01-05T08:49:33Z | - |
dc.date.available | 2021-01-05T08:49:33Z | - |
dc.date.issued | 2020-04 | - |
dc.identifier.issn | 1881-6193 | - |
dc.identifier.uri | http://hdl.handle.net/2433/260634 | - |
dc.description | "Mathematical structures of integrable systems and their applications". September 5-7, 2018. edited by Shinsuke Iwao. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed. | en |
dc.description.abstract | In this report, I summarize results in the paper (Kodama, Matsutani, Previato, Ann. Inst. Fourier 63 (2013) 655-688) to pose a problem to give an explicit relation between periodic and quasi-periodic solutions of Toda lattice. For a hyperelliptic curve Xg of genus g, we have a quasi-periodic solution of Toda lattice in terms of the hyperelliptic σ function and its addition theorem. Using the division polynomial of Xg, we find 2N-division points in its Jacobi variety and then have N-periodic solution of Toda-lattice. It is well-known that the N-periodic solution is associated with a hyperellptic curve ˆXg, N-1 of genus N-1 rather than g. However it is not clear how Xg and ˆXg, N-1 are connected geometrically, though the problem is very simple and natural. In this report, after I give a review of the recent development of σ function theory of higher genus and show the summary of our previous work, I give some comments on the problem. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | jpn | - |
dc.publisher | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.publisher.alternative | 京都大学数理解析研究所 | ja |
dc.rights | © 2020 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. | en |
dc.subject | 14H55 | en |
dc.subject | 14H50 | en |
dc.subject | 14K25 | en |
dc.subject | 14H40 | en |
dc.subject | division point | en |
dc.subject | toda equation | en |
dc.subject | hyperelliptic curve | en |
dc.subject | Abel functions | en |
dc.subject.ndc | 410 | - |
dc.title | 超楕円σ関数による戸田格子の周期解と擬周期解について | ja |
dc.title.alternative | Periodic and quasi-periodic solutions of Toda lattice via hyperelliptic $sigma$ functions (Mathematical structures of integrable systems and their applications) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AA12196120 | - |
dc.identifier.jtitle | 数理解析研究所講究録別冊 | ja |
dc.identifier.volume | B78 | - |
dc.identifier.spage | 155 | - |
dc.identifier.epage | 178 | - |
dc.textversion | publisher | - |
dc.sortkey | 07 | - |
dc.address | 金沢大学電子情報通信学系 | ja |
dc.address.alternative | Kanazawa University, Department of Electronic Information and Communication | en |
dcterms.accessRights | open access | - |
datacite.awardNumber | 16K05187 | - |
dc.identifier.pissn | 1881-6193 | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku Bessatsu | en |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName.alternative | Japan Society for the Promotion of Science (JSPS) | en |
出現コレクション: | B78 Mathematical structures of integrable systems and their applications |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。