このアイテムのアクセス数: 298

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
B78-07.pdf440.18 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.author松谷, 茂樹ja
dc.contributor.alternativeMatsutani, Shigekien
dc.contributor.transcriptionマツタニ, シゲキja-Kana
dc.date.accessioned2021-01-05T08:49:33Z-
dc.date.available2021-01-05T08:49:33Z-
dc.date.issued2020-04-
dc.identifier.issn1881-6193-
dc.identifier.urihttp://hdl.handle.net/2433/260634-
dc.description"Mathematical structures of integrable systems and their applications". September 5-7, 2018. edited by Shinsuke Iwao. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed.en
dc.description.abstractIn this report, I summarize results in the paper (Kodama, Matsutani, Previato, Ann. Inst. Fourier 63 (2013) 655-688) to pose a problem to give an explicit relation between periodic and quasi-periodic solutions of Toda lattice. For a hyperelliptic curve Xg of genus g, we have a quasi-periodic solution of Toda lattice in terms of the hyperelliptic σ function and its addition theorem. Using the division polynomial of Xg, we find 2N-division points in its Jacobi variety and then have N-periodic solution of Toda-lattice. It is well-known that the N-periodic solution is associated with a hyperellptic curve ˆXg, N-1 of genus N-1 rather than g. However it is not clear how Xg and ˆXg, N-1 are connected geometrically, though the problem is very simple and natural. In this report, after I give a review of the recent development of σ function theory of higher genus and show the summary of our previous work, I give some comments on the problem.en
dc.format.mimetypeapplication/pdf-
dc.language.isojpn-
dc.publisherResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.publisher.alternative京都大学数理解析研究所ja
dc.rights© 2020 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.en
dc.subject14H55en
dc.subject14H50en
dc.subject14K25en
dc.subject14H40en
dc.subjectdivision pointen
dc.subjecttoda equationen
dc.subjecthyperelliptic curveen
dc.subjectAbel functionsen
dc.subject.ndc410-
dc.title超楕円σ関数による戸田格子の周期解と擬周期解についてja
dc.title.alternativePeriodic and quasi-periodic solutions of Toda lattice via hyperelliptic $sigma$ functions (Mathematical structures of integrable systems and their applications)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAA12196120-
dc.identifier.jtitle数理解析研究所講究録別冊ja
dc.identifier.volumeB78-
dc.identifier.spage155-
dc.identifier.epage178-
dc.textversionpublisher-
dc.sortkey07-
dc.address金沢大学電子情報通信学系ja
dc.address.alternativeKanazawa University, Department of Electronic Information and Communicationen
dcterms.accessRightsopen access-
datacite.awardNumber16K05187-
dc.identifier.pissn1881-6193-
dc.identifier.jtitle-alternativeRIMS Kokyuroku Bessatsuen
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:B78 Mathematical structures of integrable systems and their applications

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。