このアイテムのアクセス数: 147

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
B82-05.pdf158.13 kBAdobe PDF見る/開く
タイトル: On the derivation of the mean field equation of the Gibbs distribution function for equilibrium vortices in an external field (Regularity and Asymptotic Analysis for Critical Cases of Partial Differential Equations)
著者: Ohtsuka, Hiroshi
著者名の別形: オオツカ, ヒロシ
キーワード: 76F99
76M99
82A05
82B40
82C40
vortices
vortex
mean field limit
canonical ensemble
発行日: Jun-2020
出版者: Research Institute for Mathematical Sciences, Kyoto University
誌名: 数理解析研究所講究録別冊
巻: B82
開始ページ: 67
終了ページ: 85
抄録: Motivated by several experimental facts, we are interested in the linear response of equilibrium vortices. In order to study the phenomenon, here we investigate the mean field limit of equilibrium vortices perturbed by an external field and derive the mean field equation of the Gibbs distribution function. Similar limits for classical point particles with bounded interactions were studied by Messer-Spohn [14] and later the results were extended to the system of vortices, which interact via the singular logarithmic potential, by Caglioti et al [2] and Kiessling [10]. In this paper, we start with the review of these results in some detail and extend their arguments to the case for vortices perturbed by an external field.
記述: Regularity and Asymptotic Analysis for Critical Cases of Partial Differential Equations. May 29-31, 2019. edited by Takayoshi Ogawa, Keiichi Kato, Mishio Kawashita and Masashi Misawa. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed.
著作権等: © 2020 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
URI: http://hdl.handle.net/2433/260678
出現コレクション:B82 Regularity and Asymptotic Analysis for Critical Cases of Partial Differential Equations

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。