このアイテムのアクセス数: 187
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
B82-07.pdf | 213.81 kB | Adobe PDF | 見る/開く |
タイトル: | A survey on long range scattering for Schrödinger equation and Klein-Gordon equation with critical nonlinearity of non-polynomial type (Regularity and Asymptotic Analysis for Critical Cases of Partial Differential Equations) |
著者: | Masaki, Satoshi |
著者名の別形: | マサキ, サトシ |
キーワード: | 35Q55 nonlinear Schrodinger equation nonlinear Klein-Gordon equation scattering problem long range scattering modified scattering. |
発行日: | Jun-2020 |
出版者: | Research Institute for Mathematical Sciences, Kyoto University |
誌名: | 数理解析研究所講究録別冊 |
巻: | B82 |
開始ページ: | 103 |
終了ページ: | 135 |
抄録: | We summarize recent progress on long range scattering for nonlinear Schrödinger equation and nonlinear Klein-Gordon equation. We introduce a technique of extracting a resonant part, which has the same oscillation speed as its argument, from non-polynomial nonlinearities, and exhibit its two applications. Firstly, we consider nonlinear Schrödinger equation with a general nonlinearity of the critical order, and investigate the relation between the shape of the nonlinearity and a typical asymptotic behavior of small solutions. Secondly, we consider nonlinear Klein-Gordon equation with a gauge-invariant nonlinearity, and find an asymptotic behavior for both real-valued case and complex-valued case. A slight improvement is seen in the second application. |
記述: | Regularity and Asymptotic Analysis for Critical Cases of Partial Differential Equations. May 29-31, 2019. edited by Takayoshi Ogawa, Keiichi Kato, Mishio Kawashita and Masashi Misawa. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed. |
著作権等: | © 2020 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. |
URI: | http://hdl.handle.net/2433/260680 |
出現コレクション: | B82 Regularity and Asymptotic Analysis for Critical Cases of Partial Differential Equations |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。