このアイテムのアクセス数: 189
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
B83-13.pdf | 142.12 kB | Adobe PDF | 見る/開く |
タイトル: | A period-ring-valued gamma function and a refinement of the reciprocity law on Stark units (Algebraic Number Theory and Related Topics 2017) |
著者: | Kashio, Tomokazu |
著者名の別形: | 加塩, 朋和 |
キーワード: | 11R27 11R42 14F30 14K22 Stark's conjectures the Gross-Stark conjecture CM-periods (p-adic) multiple gamma functions p-adic Hodge theory |
発行日: | Oct-2020 |
出版者: | Research Institute for Mathematical Sciences, Kyoto University |
誌名: | 数理解析研究所講究録別冊 |
巻: | B83 |
開始ページ: | 169 |
終了ページ: | 181 |
抄録: | This is an announcement of the results of the paper "On a common refinement of Stark units and Gross-Stark units". We study a relation between CM-periods, multiple gamma functions, the rank one abelian Stark conjecture, and their p-adic analogues. The main results are as follows. First we construct two kinds of period-ring valued functions under a slight generalization of Hiroyuki Yoshida's conjecture on "Absolute CM-periods". Here the period ring is in the sense of p-adic Hodge theory. Then we conjecture a reciprocity law on their special values concerning the absolute Frobenius action on Fontaine's period ring Bcris. We show that our conjecture implies a part of Stark's conjecture and a refinement of Gross' p-adic analogue simultaneously. We also provide some partial results for our conjecture. |
記述: | Algebraic Number Theory and Related Topics 2017. December 4-8, 2017. edited by Hiroshi Tsunogai, Takao Yamazaki and Yasushi Mizusawa. The papers presented in this volume of RIMS Kôkyûroku Bessatsu are in final form and refereed. |
著作権等: | © 2020 by the Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. |
URI: | http://hdl.handle.net/2433/260697 |
出現コレクション: | B83 Algebraic Number Theory and Related Topics 2017 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。