ダウンロード数: 68
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.pnucene.2020.103611.pdf | 2.12 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Yamamoto, Toshihiro | en |
dc.contributor.author | Sakamoto, Hiroki | en |
dc.contributor.alternative | 山本, 俊弘 | ja |
dc.date.accessioned | 2021-03-01T06:22:52Z | - |
dc.date.available | 2021-03-01T06:22:52Z | - |
dc.date.issued | 2021-02 | - |
dc.identifier.issn | 0149-1970 | - |
dc.identifier.uri | http://hdl.handle.net/2433/261802 | - |
dc.description.abstract | The perturbation source method (PSM), which is a Monte Carlo perturbation calculation method, is applied to geometry changes in fixed-source neutron transport problems. In PSM, perturbation particles that represent the flux difference due to the changes in geometry are explicitly tracked within the perturbed system. A perturbation calculation for geometry change can be performed by replacing the material in a perturbed region with the material that occupies the adjoining region beyond the geometry change. The efficiency of the PSM can be enhanced by adding a pseudo-scattering cross section to the perturbed region. For geometry changes where the perturbed region is small, PSM exhibits excellent performance compared to the two independent runs before and after the perturbation if optimized pseudo-scattering cross sections are used. This method can also be applied to perturbation due to an external boundary change. Although the correlated sampling method (CS) is another available Monte Carlo method for geometry change, PSM largely outperforms CS in terms of computational efficiency for the numerical examples tested in this study. | en |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier BV | en |
dc.rights | © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. | en |
dc.rights | The full-text file will be made open to the public on 1 February 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.rights | This is not the published version. Please cite only the published version. | en |
dc.rights | この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | ja |
dc.subject | Monte Carlo | en |
dc.subject | Perturbation | en |
dc.subject | Fixed source | en |
dc.subject | Neutron | en |
dc.title | Monte Carlo perturbation calculation for geometry change in fixed source problems with the perturbation source method | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Progress in Nuclear Energy | en |
dc.identifier.volume | 132 | - |
dc.relation.doi | 10.1016/j.pnucene.2020.103611 | - |
dc.textversion | author | - |
dc.identifier.artnum | 103611 | - |
dc.address | Institute for Integrated Radiation and Nuclear Science, Kyoto University | en |
dc.address | Radiation Dose Analysis and Evaluation Network, Tokyo | en |
dcterms.accessRights | open access | - |
datacite.date.available | 2023-02-01 | - |
出現コレクション: | 学術雑誌掲載論文等 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。