Downloads: 24

Files in This Item:
File Description SizeFormat 
RIMS1926.pdf237.55 kBAdobe PDFView/Open
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMINAMIDE, Arataen
dc.contributor.authorTSUJIMURA, Shotaen
dc.contributor.alternative南出, 新ja
dc.contributor.alternative辻村, 昇太ja
dc.contributor.transcriptionミナミデ, アラタja-Kana
dc.contributor.transcriptionツジムラ, ショウタja-Kana
dc.date.accessioned2021-03-03T08:29:29Z-
dc.date.available2021-03-03T08:29:29Z-
dc.date.issued2020-09-
dc.identifier.urihttp://hdl.handle.net/2433/261824-
dc.description.abstractIt is well-known that various profinite groups appearing in anabelian geometry satisfy distinctive group-theoretic properties such as the slimness [i.e., the property that every open subgroup is center-free] and the strong indecomposability [i.e., the property that every open subgroup has no nontrivial product decomposition]. In the present paper, we consider another group-theoretic property on profinite groups, which we shall refer to as strong internal indecomposability --this is a stronger property than both the slimness and the strong indecomposability-- and prove that various profinite groups appearing in anabelian geometry [e.g., the étale fundamental groups of hyperbolic curves over number fields, p-adic local fields, or finite fields; the absolute Galois groups of Henselian discrete valuation fields with positive characteristic residue fields or Hilbertian fields] satisfy this property. Moreover, by applying the pro-prime-to-p version of the Grothendieck Conjecture for hyperbolic curves over finite fields of characteristic p [established by Saidi and Tamagawa], together with some considerations on almost surface groups, we also prove that the Grothendieck-Teichmüller group satisfies the strong indecomposability . This gives an affirmative answer to an open problem posed in a first author's previous work.en
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.publisher.alternative京都大学数理解析研究所ja
dc.subject14H30en
dc.subject12E30en
dc.subjectprofinite groupen
dc.subjectinternal indecomposabilityen
dc.subjectabsolute Galois groupen
dc.subjectétale fundamental groupen
dc.subjecthyperbolic curveen
dc.subjectGrothendieck-Teichmüller groupen
dc.subjectanabelian geometryen
dc.subject.ndc410-
dc.titleInternal Indecomposability of Various Profinite Groups in Anabelian Geometryen
dc.typeother-
dc.type.niitypePreprint-
dc.identifier.spage1-
dc.identifier.epage39-
dc.textversionauthor-
dc.identifier.artnumRIMS-1926-
dc.sortkey1926-
dc.addressResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.addressResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.relation.urlhttp://www.kurims.kyoto-u.ac.jp/preprint/index.html-
dcterms.accessRightsopen access-
datacite.awardNumber20K14285-
datacite.awardNumber18J10260-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
Appears in Collections:Research Institute for Mathematical Sciences, preprints

Show simple item record

Export to RefWorks


Export Format: 


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.