ダウンロード数: 94
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
RIMS1935.pdf | 483.52 kB | Adobe PDF | 見る/開く |
タイトル: | Combinatorial Construction of the Absolute Galois Group of the Field of Rational Numbers |
著者: | HOSHI, Yuichiro MOCHIZUKI, Shinichi TSUJIMURA, Shota |
著者名の別形: | 星, 裕一郎 望月, 新一 辻村, 昇太 |
キーワード: | 14H30 14H25 anabelian geometry étale fundamental group GrothendieckTeichmüller group hyperbolic curve configuration space combinatorial Belyi cuspidalization Grothendieck Conjecture |
発行日: | Dec-2020 |
出版者: | Research Institute for Mathematical Sciences, Kyoto University |
開始ページ: | 1 |
終了ページ: | 97 |
論文番号: | RIMS-1935 |
抄録: | In this paper, we give a purely combinatorial/group-theoretic construction of the conjugacy class of subgroups of the Grothendieck-Teichmüller group GT determined by the absolute Galois group GQ def = Gal(Q/Q) [where Q denotes the field of algebraic numbers] of the field of rational numbers Q. In fact, this construction also yields, as a by-product, a purely combinatorial/group-theoretic characterization of the GT-conjugates of closed subgroups of GQ that are "sufficiently large" in a certain sense. We then introduce the notions of TKND-fields [i.e., "torally Kummernondegenerate fields"] and AVKF-fields [i.e., "abelian variety Kummerfaithful fields"], which generalize, respectively, the notions of "torally Kummer-faithful fields" and "Kummer-faithful fields" [notions that appear in previous work of Mochizuki]. For instance, if we write Qab⊆ Q for the maximal abelian extension field of Q, then every finite extension of Qab is a TKND-AVKF-field [i.e., both TKND and AVKF]. We then apply the purely combinatorial/group-theoretic characterization referred to above to prove that, if a subfield K ⊆ Q is TKND-AVKF, then the commensurator in GT of the subgroup GK⊆ GQ determined by K is contained in GQ. Finally, we combine this computation of the commensurator with a result of Hoshi-Minamide-Mochizuki concerning GT to prove a semi-absolute version of the Grothendieck Conjecture for higher dimensional [i.e., of dimension ≥ 2] configuration spaces associated to hyperbolic curves of genus zero over TKND-AVKF-fields. |
URI: | http://hdl.handle.net/2433/261833 |
関連リンク: | http://www.kurims.kyoto-u.ac.jp/preprint/index.html |
出現コレクション: | 数理解析研究所プレプリント |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。