ダウンロード数: 94

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
RIMS1935.pdf483.52 kBAdobe PDF見る/開く
タイトル: Combinatorial Construction of the Absolute Galois Group of the Field of Rational Numbers
著者: HOSHI, Yuichiro
MOCHIZUKI, Shinichi
TSUJIMURA, Shota
著者名の別形: 星, 裕一郎
望月, 新一
辻村, 昇太
キーワード: 14H30
14H25
anabelian geometry
étale fundamental group
GrothendieckTeichmüller group
hyperbolic curve
configuration space
combinatorial Belyi cuspidalization
Grothendieck Conjecture
発行日: Dec-2020
出版者: Research Institute for Mathematical Sciences, Kyoto University
開始ページ: 1
終了ページ: 97
論文番号: RIMS-1935
抄録: In this paper, we give a purely combinatorial/group-theoretic construction of the conjugacy class of subgroups of the Grothendieck-Teichmüller group GT determined by the absolute Galois group GQ def = Gal(Q/Q) [where Q denotes the field of algebraic numbers] of the field of rational numbers Q. In fact, this construction also yields, as a by-product, a purely combinatorial/group-theoretic characterization of the GT-conjugates of closed subgroups of GQ that are "sufficiently large" in a certain sense. We then introduce the notions of TKND-fields [i.e., "torally Kummernondegenerate fields"] and AVKF-fields [i.e., "abelian variety Kummerfaithful fields"], which generalize, respectively, the notions of "torally Kummer-faithful fields" and "Kummer-faithful fields" [notions that appear in previous work of Mochizuki]. For instance, if we write Qab⊆ Q for the maximal abelian extension field of Q, then every finite extension of Qab is a TKND-AVKF-field [i.e., both TKND and AVKF]. We then apply the purely combinatorial/group-theoretic characterization referred to above to prove that, if a subfield K ⊆ Q is TKND-AVKF, then the commensurator in GT of the subgroup GK⊆ GQ determined by K is contained in GQ. Finally, we combine this computation of the commensurator with a result of Hoshi-Minamide-Mochizuki concerning GT to prove a semi-absolute version of the Grothendieck Conjecture for higher dimensional [i.e., of dimension ≥ 2] configuration spaces associated to hyperbolic curves of genus zero over TKND-AVKF-fields.
URI: http://hdl.handle.net/2433/261833
関連リンク: http://www.kurims.kyoto-u.ac.jp/preprint/index.html
出現コレクション:数理解析研究所プレプリント

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。