ダウンロード数: 77

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s10994-020-05927-y.pdf543.83 kBAdobe PDF見る/開く
タイトル: Reshaped tensor nuclear norms for higher order tensor completion
著者: Wimalawarne, Kishan
Mamitsuka, Hiroshi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-6607-5617 (unconfirmed)
著者名の別形: 馬見塚, 拓
キーワード: Tensor nuclear norm
Reshaping
CP rank
Generalization bounds
発行日: Mar-2021
出版者: Springer Nature
誌名: Machine Learning
巻: 110
開始ページ: 507
終了ページ: 531
抄録: We investigate optimal conditions for inducing low-rankness of higher order tensors by using convex tensor norms with reshaped tensors. We propose the reshaped tensor nuclear norm as a generalized approach to reshape tensors to be regularized by using the tensor nuclear norm. Furthermore, we propose the reshaped latent tensor nuclear norm to combine multiple reshaped tensors using the tensor nuclear norm. We analyze the generalization bounds for tensor completion models regularized by the proposed norms and show that the novel reshaping norms lead to lower Rademacher complexities. Through simulation and real-data experiments, we show that our proposed methods are favorably compared to existing tensor norms consolidating our theoretical claims.
著作権等: This is a post-peer-review, pre-copyedit version of an article published in Machine Learning. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10994-020-05927-y.
The full-text file will be made open to the public on 3 January 2022 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.
This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/262422
DOI(出版社版): 10.1007/s10994-020-05927-y
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。