このアイテムのアクセス数: 146

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
18824889.2021.1906017.pdf1.67 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorIto, Kaitoen
dc.contributor.authorKashima, Kenjien
dc.contributor.authorKato, Masakazuen
dc.contributor.authorOhta, Yoshitoen
dc.contributor.alternative伊藤, 海斗ja
dc.contributor.alternative加嶋, 健司ja
dc.contributor.alternative太田, 快人ja
dc.date.accessioned2021-06-22T07:36:16Z-
dc.date.available2021-06-22T07:36:16Z-
dc.date.issued2021-04-25-
dc.identifier.urihttp://hdl.handle.net/2433/263838-
dc.description.abstractExtreme outliers of wind power fluctuation are a source of severe damage to power systems. In our previous work, we proposed a modelling framework, verified its usefulness via real data, and developed a model-based evaluation method of the impact of such extreme outliers. However, it has been a drawback that the obtained estimates of frequency fluctuation of power systems are sometimes excessively conservative for their practical use. To overcome this weakness, theory and methods for tightening the fluctuation estimates are investigated in this paper. This is done by applying a robust performance analysis method of a Lur'e system to the error analysis of stochastic linearization. The usefulness of our proposed method is shown through a load frequency control model.en
dc.language.isoeng-
dc.publisherInforma UK Limiteden
dc.rights© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.en
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.subjectExtreme eventsen
dc.subjectlinearizationen
dc.subjectrenewable energyen
dc.subjectstochastic systemsen
dc.subjectstable distributionen
dc.titleStochastic model-based assessment of power systems subject to extreme wind power fluctuationen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleSICE Journal of Control, Measurement, and System Integrationen
dc.identifier.volume14-
dc.identifier.issue1-
dc.identifier.spage67-
dc.identifier.epage77-
dc.relation.doi10.1080/18824889.2021.1906017-
dc.textversionpublisher-
dcterms.accessRightsopen access-
datacite.awardNumber18H01461-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-18H01461/-
dc.identifier.pissn1882-4889-
dc.identifier.eissn1884-9970-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle確率可制御性縮約による機械学習援用制御手法の可解釈性獲得ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。